RESUMO
Foot-and-mouth disease (FMD) has a high prevalence in cloven-hoofed animals. It is also highly contagious and remains a serious threat to livestock worldwide. Despite the widespread vaccination program in Iran, outbreaks of FMD continue to occur. Vaccination is one of the most effective methods of preventing FMD. The vaccines used in Iran are of the inactivated type and contain several serotypes. Since inactivated vaccines without adjuvants do not induce a high and durable antibody response, it is necessary to use adjuvants. Montanide ISA 206 VG is a mineral oil-based adjuvant that produces a water-in-oil-in-water (w:o:w) emulsion in vaccine preparations. However, a large number of manufacturers in Iran and around the world still use alum adjuvant (with or without saponin) to produce the FMD vaccine. This study used Montanide ISA 206 and alum adjuvants to administer the O2010 serotype of the FMD virus to goats. A total of six goats were divided randomly into three groups. Vaccines were administered subcutaneously twice, at a one-month interval. Blood sampling was done at different times, and the micro-neutralization method was used to measure the neutralizing antibody titer in each serum. Seven days after the second vaccination, the alum group's antibody titer was higher but not statistically significant. However, from the 28th day after the second injection until the end of the study, the Montanide ISA 206 group's antibody titer was significantly higher than that of the alum group. Six months after the second injection, the antibody titer in the ISA 206 group remained at the peak level, while in the alum group, it decreased and reached the minimum protective level. Nine months after the second injection, the antibody titer remained at its peak level in the ISA 206 group, whereas it dropped significantly in the alum group. Based on the findings, ISA 206 VG is capable of generating long-term humoral immunity in goats against the FMD serotype O2010 and could replace aluminum hydroxide adjuvants in FMD vaccine preparations.
Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Anticorpos Neutralizantes , Vírus da Febre Aftosa , Febre Aftosa , Doenças das Cabras , Cabras , Vacinas Virais , Animais , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/farmacologia , Vírus da Febre Aftosa/imunologia , Doenças das Cabras/prevenção & controle , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Irã (Geográfico) , Ácidos Oleicos/administração & dosagem , Manitol/análogos & derivados , Manitol/administração & dosagemRESUMO
Naja naja oxiana (NNO) is one of the important venomous species in Iran. The current snakebite treatment is antivenom therapy that deals with hyper immunization of horses with crude or fractionated snake venom plus traditional adjuvants, like Freund's adjuvant. For improvement of antivenom production, it has been suggested to use different adjuvant systems or immunization procedures. In this study, humoral immune responses against immunogenic fractions of NNO venom (NNO3 and NNO4) and crude venom have been compared by usage of different adjuvant and immunization routes. Additionally, a new indirect enzyme-linked immunosorbent assay (ELISA) was set up for the detection of specific antivenom antibodies. This study was conducted on six different groups of female Dutch rabbits that were hyperimmunized using crude and fractionated NNO venom, along with Freund's and MF59 adjuvants through subcutaneous or intramuscular route. The immunization was performed four times with 10-day intervals and the levels of specific antibodiees were detected by indirect ELISA. The statistical analysis reveals a negligible variation in the antivenom titers among the venom-inoculated groups, regardless of the adjuvant type or the immunization route. Finally, it was concluded that the fractions are efficient for antivenom production, and it is possible to use MF59 adjuvant via subcutaneous routes as an alternative to Freund's adjuvants considering its fair immunopotentiation capacity and safety in animals.
Assuntos
Antivenenos , Naja naja , Polissorbatos , Esqualeno , Feminino , Animais , Cavalos , Coelhos , Formação de Anticorpos , Venenos Elapídicos , Adjuvantes Imunológicos , Imunização/veterinária , Adjuvante de FreundRESUMO
The nasal passage is the primary entry point for many infectious agents. Therefore, nasal vaccines that can overcome the limitations associated with antigen uptake are likely to play an important role in protecting these infectious agents. Thus, adjuvants and antigen-carrying systems that can induce a suitable mucosal and systemic immune response against their accompanying antigens are highly important. In this study, synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODN) accompanied by the recombinant ectodomain of influenza M2 protein were encapsulated in N-trimethyl chitosan (TMC) nanoparticles. After the preparation of TMC nanoparticles, the morphological characteristics and loading efficiency and in vitro antigen release, as well as their ability to induce efficient immune responses against M2e in intranasal inoculation in the mouse model, were studied. Based on the size and zeta potential of the nanoparticles prepared in this study, it was determined that they were all nanosized, and their positive zeta potential ranged from 25 to 28 mV, while their polydispersity index was between 0.1 to 0.2, indicating a narrow range of particle sizes. A significant increase in serum levels of the total M2e-specific IgG antibody and BALF anti-M2e IgA was observed in mice intranasally immunized with M2e/CpG-ODN/TMC as opposed to those that were intranasally immunized with M2e/TMC, M2e/CpG-ODN, free M2e, and CpG-ODN/TMC. There was also a significant change in the IgG2a/IgG1 ratio in favour of IgG2a seems that CpG-ODN is responsible for directing the immune system towards Th1. Our findings show that CpG-ODN can significantly enhance the mucosal and systemic humoral immune response against M2e when encapsulated in a suitable carrier such as TMC for intranasal administration. In conclusion, when combined with a suitable carrier, CpG-ODN can be considered an effective adjuvant for mucosal administration.