Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772209

RESUMO

The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers' support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers' well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker's models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers' health information towards a successful risk management strategy for safe industrial Cobot environments.


Assuntos
Transtornos Mentais , Saúde Ocupacional , Humanos , Local de Trabalho , Nível de Saúde
2.
Sensors (Basel) ; 21(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640940

RESUMO

Collaborative part transportation is an interesting application as many industrial sectors require moving large parts among different areas of the workshops, using a large amount of the workforce on this tasks. Even so, the implementation of such kinds of robotic solutions raises technical challenges like force-based control or robot-to-human feedback. This paper presents a path-driven mobile co-manipulation architecture, proposing an algorithm that deals with all the steps of collaborative part transportation. Starting from the generation of force-based twist commands, continuing with the path management for the definition of safe and collaborative areas, and finishing with the feedback provided to the system users, the proposed approach allows creating collaborative lanes for the conveyance of large components. The implemented solution and performed tests show the suitability of the proposed architecture, allowing the creation of a functional robotic system able to assist operators transporting large parts on workshops.


Assuntos
Braço , Robótica , Algoritmos , Meio Ambiente , Humanos , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA