Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007375

RESUMO

Narrow escape theory deals with the first passage of a particle diffusing in a cavity with small circular windows on the cavity wall to one of the windows. Assuming that (i) the cavity has no size anisotropy and (ii) all windows are sufficiently far away from each other, the theory provides an analytical expression for the particle mean first-passage time (MFPT) to one of the windows. This expression shows that the MFPT depends on the only global parameter of the cavity, its volume, independent of the cavity shape, and is inversely proportional to the product of the particle diffusivity and the sum of the window radii. Amazing simplicity and universality of this result raises the question of the range of its applicability. To shed some light on this issue, we study the narrow escape problem in a cylindrical cavity of arbitrary size anisotropy with two small windows arbitrarily located on the cavity side wall. We derive an approximate analytical solution for the MFPT, which smoothly goes from the conventional narrow escape solution in an isotropic cavity when the windows are sufficiently far away from each other to a qualitatively different solution in a long cylindrical cavity (the cavity length significantly exceeds its radius). Our solution demonstrates the mutual influence of the windows on the MFPT and shows how it depends on the inter-window distance. A key step in finding the solution is an approximate replacement of the initial three-dimensional problem by an equivalent one-dimensional one, where the particle diffuses along the cavity axis and the small absorbing windows are modeled by delta-function sinks. Brownian dynamics simulations are used to establish the range of applicability of our approximate approach and to learn what it means that the two windows are far away from each other.

2.
Phys Chem Chem Phys ; 25(3): 2035-2042, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546317

RESUMO

Recent progress in biophysics (for example, in studies of chemical sensing and spatiotemporal cell-signaling) poses new challenges to statistical theory of trapping of single diffusing particles. Here we deal with one of them, namely, trapping kinetics of single particles diffusing in a half-space bounded by a reflecting flat surface containing an absorbing circular disk. This trapping problem is essentially two-dimensional and the question of the angular dependence of the kinetics on the particle starting point is highly nontrivial. We propose an approximate approach to the problem that replaces the absorbing disk by an absorbing hemisphere of a properly chosen radius. This replacement makes the problem angular-independent and essentially one-dimensional. After the replacement one can find an exact solution for the particle propagator (Green's function) that allows one to completely characterize the kinetics. Extensive testing of the theoretical predictions based on the absorbing hemisphere approximation against three-dimensional Brownian dynamics simulations shows excellent agreement between the analytical and simulation results when the particle starts sufficiently far away from the disk. Our approach fails and the angular dependence of the kinetics is important when the distance of the particle starting point from the disk center is comparable with the disk radius. However, even when the initial distance is only two disk radii, the maximum relative error of the theoretical predictions is about 10%. The relative error rapidly decreases as the initial distance increases.


Assuntos
Simulação de Dinâmica Molecular , Difusão , Biofísica , Cinética
3.
J Chem Phys ; 158(5): 054113, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754825

RESUMO

The transport of particles through channels is of paramount importance in physics, chemistry, and surface science due to its broad real world applications. Much insight can be gained by observing the transition paths of a particle through a channel and collecting statistics on the lifetimes in the channel or the escape probabilities from the channel. In this paper, we consider the diffusive transport through a narrow conical channel of a Brownian particle subject to intermittent dynamics, namely, stochastic resetting. As such, resetting brings the particle back to a desired location from where it resumes its diffusive phase. To this end, we extend the Fick-Jacobs theory of channel-facilitated diffusive transport to resetting-induced transport. Exact expressions for the conditional mean first passage times, escape probabilities, and the total average lifetime in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. It is shown that resetting can expedite the transport through the channel-rigorous constraints for such conditions are then illustrated. Furthermore, we observe that a carefully chosen resetting rate can render the average lifetime of the particle inside the channel minimal. Interestingly, the optimal rate undergoes continuous and discontinuous transitions as some relevant system parameters are varied. The validity of our one-dimensional analysis and the corresponding theoretical predictions is supported by three-dimensional Brownian dynamics simulations. We thus believe that resetting can be useful to facilitate particle transport across biological membranes-a phenomenon that can spearhead further theoretical and experimental studies.

4.
J Chem Phys ; 158(5): 054114, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754803

RESUMO

This study is devoted to the transport of neutral solutes through porous flat membranes, driven by the solute concentration difference in the reservoirs separated by the membrane. Transport occurs through membrane channels, which are assumed to be non-overlapping, identical, straight cylindrical pores connecting the reservoirs. The key quantities characterizing transport are membrane permeability and its diffusion resistance. Such transport problems arising in very different contexts, ranging from plant physiology and cell biology to chemical engineering, have been studied for more than a century. Nevertheless, an expression giving the permeability for a membrane of arbitrary thickness at arbitrary surface densities of the channel openings is still unknown. Here, we fill in the gap and derive such an expression. Since this expression is approximate, we compare its predictions with the permeability obtained from Brownian dynamics simulations and find good agreement between the two.

5.
J Chem Phys ; 151(13): 131102, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594338

RESUMO

Diffusive transport of particles in a biased periodic potential is characterized by the effective drift velocity and diffusivity, which are functions of the biasing force. We derive a simple exact expression for the effective diffusivity and use it to show that the force dependence of this quantity may be a nonmonotonic function with a maximum [as shown in the work of Reimann et al. Phys. Rev. Lett. 87, 010602 (2001) for periodic sinusoidal potential] or with a minimum, or a monotonic function. The shape of the dependence is determined by the shape of the periodic potential.

6.
J Chem Phys ; 150(19): 194109, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117790

RESUMO

We study steady-state flux of particles diffusing on a flat surface and trapped by absorbing spikes of arbitrary length periodically protruding from a reflecting base. It is assumed that the particle concentration, far from this comblike boundary, is kept constant. To find the flux, we use a boundary regularization approach that replaces the initial highly rough and heterogeneous boundary by an effective boundary which is smooth and uniform. After such a replacement, the two-dimensional diffusion problem becomes essentially one-dimensional, and the steady-state flux can be readily found. Our main results are simple analytical expressions determining the position of the smooth effective boundary and its uniform trapping rate as functions of the spike length and interspike distance. It is shown that the steady-state flux to the effective boundary is identical to its counterpart to the initial boundary at large distances from this boundary. Our analytical results are corroborated by Brownian dynamics simulations.

7.
J Chem Phys ; 150(6): 064107, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769973

RESUMO

We study trapping of particles diffusing in a spherical cavity with an absorbing wall containing small static spherical absorbers localized in a spherical region in the center of the cavity. The focus is on the competition between the absorbers and the cavity wall for diffusing particles. Assuming that the absorbers and, initially, the particles are uniformly distributed in the central region, we derive an expression for the particle trapping probability by the cavity wall. The expression gives this probability as a function of two dimensionless parameters: the transparency parameter, characterizing the efficiency of the particle trapping by the absorbers, and the ratio of the absorber-containing region radius to that of the cavity. This work is a generalization of a recent study by Krapivsky and Redner [J. Chem. Phys. 147, 214903 (2017)] who considered the case where the absorber-containing region occupies the entire cavity. The expression for the particle trapping probability is derived in the framework of a steady-state approach which, in our opinion, is much simpler than the time-dependent approach used in the above-mentioned study.

8.
J Chem Phys ; 148(21): 214106, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884048

RESUMO

A theoretical framework based on using the Frenet-Serret moving frame as the coordinate system to study the diffusion of bounded Brownian point-like particles has been recently developed [L. Dagdug et al., J. Chem. Phys. 145, 074105 (2016)]. Here, this formalism is extended to a variable cross section tube with a helix with constant torsion and curvature as a mid-curve. For the sake of clarity, we will divide this study into two parts: one for a helical tube with a constant cross section and another for a helical tube with a variable cross section. For helical tubes with a constant cross section, two regimes need to be considered for systematic calculations. On the one hand, in the limit when the curvature is smaller than the inverse of the helical tube radius R, the resulting coefficient is that obtained by Ogawa. On the other hand, we also considered the limit when torsion is small compared to R, and to the best of our knowledge, the expression thus obtained has not been previously reported in the literature. In the more general case of helical tubes with a variable cross section, we also had to limit ourselves to small variations of R. In this case, we obtained one of the main contributions of this work, which is an expression for the diffusivity dependent on R', torsion, and curvature that consistently reduces to the well-known expressions within the corresponding limits.

9.
J Chem Phys ; 148(8): 084103, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495779

RESUMO

We study trapping of particles diffusing on a flat surface by complex-shaped absorbers formed by periodic absorbing spikes protruding from absorbing circular cores. It is shown that a spiky absorber can be replaced by an equivalent, from the trapping point of view, circular absorber of properly chosen radius. A simple expression for the effective absorber radius in terms of the geometric parameters of the spiky absorber (the number and length of the spikes and the core radius) is derived. To check its accuracy and to establish the range of its applicability, we run Brownian dynamics simulations and obtain the mean lifetimes of particles diffusing inside a reflecting circle with different spiky absorbers placed in its center. These mean lifetimes are then compared with their counterparts given by the theory for equivalent circular absorbers. There is an excellent agreement between the lifetimes obtained by the two methods when the radius of the reflecting circle is sufficiently large.

10.
J Chem Phys ; 149(4): 044106, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068203

RESUMO

We study trapping of diffusing particles by a periodic non-uniform boundary formed by absorbing spikes protruding from a reflecting flat base. It is argued that such a boundary can be replaced by a flat uniform partially absorbing boundary with a properly chosen effective trapping rate. Assuming that the spikes are short compared to the inter-spike distance, we propose an approximate expression which gives the trapping rate in terms of geometric parameters of the boundary and the particle diffusivity. To validate this result, we compare some theoretical predictions based on the expression for the effective trapping rate with corresponding quantities obtained from Brownian dynamics simulations.

11.
J Chem Phys ; 147(10): 104103, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28915752

RESUMO

Recent experiments with single biological nanopores, as well as single-molecule fluorescence spectroscopy and pulling studies of protein and nucleic acid folding raised a number of questions that stimulated theoretical and computational investigations of barrier crossing dynamics. The present paper addresses a closely related problem focusing on trajectories of Brownian particles that escape from a cylindrical trap in the presence of a force F parallel to the cylinder axis. To gain new insights into the escape dynamics, we analyze the "fine structure" of these trajectories. Specifically, we divide trajectories into two segments: a looping segment, when a particle unsuccessfully tries to escape returning to the trap bottom again and again, and a direct-transit segment, when it finally escapes moving without touching the bottom. Analytical expressions are derived for the Laplace transforms of the probability densities of the durations of the two segments. These expressions are used to find the mean looping and direct-transit times as functions of the biasing force F. It turns out that the force-dependences of the two mean times are qualitatively different. The mean looping time monotonically increases as F decreases, approaching exponential F-dependence at large negative forces pushing the particle towards the trap bottom. In contrast to this intuitively appealing behavior, the mean direct-transit time shows rather counterintuitive behavior: it decreases as the force magnitude, |F|, increases independently of whether the force pushes the particles to the trap bottom or to the exit from the trap, having a maximum at F = 0.

12.
J Chem Phys ; 147(13): 134104, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987083

RESUMO

We study transitions of diffusing particles between the left and right ends of expanding and narrowing conical tubes. In an expanding tube, such transitions occur faster than in the narrowing tube of the same length and radius variation rate. This happens because the entropy potential pushes the particle towards the wide tube end, thus accelerating the transitions in the expanding tube and slowing them down in the narrowing tube. To gain deeper insight into how the transitions occur, we divide each trajectory into the direct-transit and looping segments. The former is the final part of the trajectory, where the particle starting from the left tube end goes to the right end without returning to the left one. The rest of the trajectory is the looping segment, where the particle, starting from the left tube end, returns to this end again and again until the direct transition happens. Our focus is on the durations of the two segments and their sum, which is the duration of the particle first passage between the left and right ends of the tube. We approach the problem using the one-dimensional description of the particle diffusion along the tube axis in terms of the modified Fick-Jacobs equation. This allows us to derive analytical expressions for the Laplace transforms of the probability densities of the first-passage, direct-transit, and looping times, which we use to find the mean values of these random variables. Our results show that the direct transits are independent of the entropy potential and occur as in free diffusion. However, this "free diffusion" occurs with the effective diffusivity entering the modified Fick-Jacobs equation, which is smaller than the particle diffusivity in a cylindrical tube. This is the only way how the varying tube geometry manifests itself in the direct transits. Since direct-transit times are direction-independent, the difference in the first-passage times in the tubes of the two types is due to the difference in the durations of the looping segments in the expanding and narrowing tubes. Obtained analytical results are supported by three-dimensional Brownian dynamics simulations.

13.
J Chem Phys ; 147(1): 014103, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688439

RESUMO

Surface transport, when the particle is allowed to leave the surface, travel in the bulk for some time, and then return to the surface, is referred to as bulk-mediated surface transport. Recently, we proposed a formalism that significantly simplifies analysis of bulk-mediated surface diffusion [A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, J. Chem. Phys. 143, 084103 (2015)]. Here this formalism is extended to bulk-mediated surface transport in the presence of bias, i.e., when the particle has arbitrary drift velocities on the surface and in the bulk. A key advantage of our approach is that the transport problem reduces to that of a two-state problem of the particle transitions between the surface and the bulk. The latter can be solved with relative ease. The formalism is used to find the Laplace transforms of the first two moments of the particle displacement over the surface in time t at arbitrary values of the particle drift velocities and diffusivities on the surface and in the bulk. This allows us to analyze in detail the time dependence of the effective drift velocity of the particle on the surface, which can be highly nontrivial.

14.
J Chem Phys ; 144(8): 084106, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931680

RESUMO

This paper deals with diffusion of point particles in linearly corrugated two-dimensional channels. Such geometry allows one to obtain an approximate analytical expression that gives the particle effective diffusivity as a function of the geometric parameters of the channel. To establish its accuracy and the range of applicability, the expression is tested against Brownian dynamics simulation results. The test shows that the expression works very well for long channel periods, but fails when the period is not long enough compared to the minimum width of the channel. To fix this deficiency, we propose a simple empirical correction to the analytical expression. The resulting corrected expression for the effective diffusivity is in excellent agreement with the simulation results for all values of the channel period.


Assuntos
Difusão , Entropia , Tamanho da Partícula
15.
J Chem Phys ; 145(7): 074105, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544085

RESUMO

We developed a theoretical framework to study the diffusion of Brownian point-like particles in bounded geometries in two and three dimensions. We use the Frenet-Serret moving frame as the coordinate system. For narrow tubes and channels, we use an effective one-dimensional description reducing the diffusion equation to a Fick-Jacobs-like equation. From this last equation, we can calculate the effective diffusion coefficient applying Neumann boundary conditions. On one hand, for channels with a straight axis our theoretical approximation for the effective coefficient does coincide with the reported in the literature [D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001) and P. Kalinay and J. K. Percus, ibid. 74, 041203 (2006)]. On the other hand, for tubes with a straight axis and circular cross-section our analytical expression does not coincide with the reported by Rubí and Reguera and by Kalinay and Percus, although it is practically identical.

16.
J Chem Phys ; 145(21): 214101, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799376

RESUMO

This paper focuses on trapping of diffusing particles by a sphere with an absorbing cap of arbitrary size on the otherwise reflecting surface. We approach the problem using boundary homogenization which is an approximate replacement of non-uniform boundary conditions on the surface of the sphere by an effective uniform boundary condition with appropriately chosen effective trapping rate. One of the main results of our analysis is an expression for the effective trapping rate as a function of the surface fraction occupied by the absorbing cap. As the cap surface fraction increases from zero to unity, the effective trapping rate increases from that for a small absorbing disk on the otherwise reflecting sphere to infinity which corresponds to a perfectly absorbing sphere. The obtained expression for the effective trapping rate is applied to find the rate constant describing trapping of diffusing particles by an absorbing cap on the surface of the sphere. Finally, we find the capacitance of a metal cap of arbitrary size on a dielectric sphere using the relation between the capacitance and the rate constant of the corresponding diffusion-limited reaction. The relative error of our approximate expressions for the rate constant and the capacitance is less than 5% over the entire range of the cap surface fraction from zero to unity.

17.
J Chem Phys ; 143(16): 164102, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520493

RESUMO

Axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with position-dependent effective diffusivity by means of the modified Fick-Jacobs equation. In this paper, Brownian dynamics simulations are used to study the range of applicability of such a description, as well as the accuracy of the expressions for the effective diffusivity proposed by different researchers.


Assuntos
Difusão , Entropia , Modelos Químicos , Algoritmos , Simulação de Dinâmica Molecular
18.
J Chem Phys ; 143(8): 084103, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328814

RESUMO

This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.


Assuntos
Difusão , Modelos Químicos , Propriedades de Superfície
19.
J Chem Phys ; 142(13): 134101, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854222

RESUMO

In this paper, we study biased diffusion of point Brownian particles in a three-dimensional comb-like structure formed by a main cylindrical tube with identical periodic cylindrical dead ends. It is assumed that the dead ends are thin cylinders whose radius is much smaller than both the radius of the main tube and the distance between neighboring dead ends. It is also assumed that in the main tube, the particle, in addition to its regular diffusion, moves with a uniform constant drift velocity. For such a system, we develop a formalism that allows us to derive analytical expressions for the Laplace transforms of the first two moments of the particle displacement along the main tube axis. Inverting these Laplace transforms numerically, one can find the time dependences of the two moments for arbitrary values of both the drift velocity and the dead-end length, including the limiting case of infinitely long dead ends, where the unbiased diffusion becomes anomalous at sufficiently long times. The expressions for the Laplace transforms are used to find the effective drift velocity and diffusivity of the particle as functions of its drift velocity in the main tube and the tube geometric parameters. As might be expected from common-sense arguments, the effective drift velocity monotonically decreases from the initial drift velocity to zero as the dead-end length increases from zero to infinity. The effective diffusivity is a more complex, non-monotonic function of the dead-end length. As this length increases from zero to infinity, the effective diffusivity first decreases, reaches a minimum, and then increases approaching a plateau value which is proportional to the square of the particle drift velocity in the main tube.


Assuntos
Difusão , Modelos Químicos , Algoritmos , Movimento (Física)
20.
J Chem Phys ; 142(23): 234902, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093574

RESUMO

We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and


Assuntos
Difusão , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA