Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(22): 5670-5685.e23, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637702

RESUMO

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.


Assuntos
Técnicas Biossensoriais , Peptídeos/química , Imagem Individual de Molécula , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Embrião de Mamíferos/citologia , Ativação Enzimática , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Camundongos , Nanopartículas/química , Conformação Proteica , Quinases da Família src/metabolismo
2.
Nature ; 590(7844): 115-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33299180

RESUMO

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Colecistocinina/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Ritmo Gama , Interneurônios/metabolismo , Masculino , Consolidação da Memória , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Navegação Espacial/fisiologia , Ritmo Teta
3.
Nat Methods ; 17(9): 928-936, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747768

RESUMO

Chemically inducible dimerization (CID) uses a small molecule to induce binding of two different proteins. CID tools such as the FK506-binding protein-FKBP-rapamycin-binding- (FKBP-FRB)-rapamycin system have been widely used to probe molecular events inside and outside cells. While various CID tools are available, chemically inducible trimerization (CIT) does not exist, due to inherent challenges in designing a chemical that simultaneously binds three proteins with high affinity and specificity. Here, we developed CIT by rationally splitting FRB and FKBP. Cellular and structural datasets showed efficient trimerization of split pairs of FRB or FKBP with full-length FKBP or FRB, respectively, by rapamycin. CIT rapidly induced tri-organellar junctions and perturbed intended membrane lipids exclusively at select membrane contact sites. By conferring one additional condition to what is achievable with CID, CIT expands the types of manipulation in single live cells to address cell biology questions otherwise intractable and engineer cell functions for future synthetic biology applications.


Assuntos
Sirolimo/química , Serina-Treonina Quinases TOR/química , Proteínas de Ligação a Tacrolimo/química , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674432

RESUMO

A Disintegrin and Metalloprotease 10, also known as ADAM10, is a cell surface protease ubiquitously expressed in mammalian cells where it cuts several membrane proteins implicated in multiple physiological processes. The dysregulation of ADAM10 expression and function has been implicated in pathological conditions, including Alzheimer's disease (AD). Although it has been suggested that ADAM10 is expressed as a zymogen and the removal of the prodomain results in its activation, other potential mechanisms for the ADAM10 proteolytic function and activation remain unclear. Another suggested mechanism is post-translational modification of the cytoplasmic domain, which regulates ADAM10-dependent protein ectodomain shedding. Therefore, the precise and temporal activation of ADAM10 is highly desirable to reveal the fine details of ADAM10-mediated cleavage mechanisms and protease-dependent therapeutic applications. Here, we present a strategy to control prodomain and cytosolic tail cleavage to regulate ADAM10 shedding activity without the intervention of small endogenous molecule signaling pathways. We generated a series of engineered ADAM10 analogs containing Tobacco Etch Virus protease (TEV) cleavage site (TEVcs), rendering ADAM10 cleavable by TEV. This strategy revealed that, in the absence of other stimuli, the TEV-mediated removal of the prodomain could not activate ADAM10. However, the TEV-mediated cleavage of the cytosolic domain significantly increased ADAM10 activity. Then, we generated ADAM10 with a minimal constitutively catalytic activity that increased significantly in the presence of TEV or after activating a chemically activatable TEV. Our results revealed a bioengineering strategy for controlling the ADAM10 activity in living cells, paving the way to obtain spatiotemporal control of ADAM10. Finally, we proved that our approach of controlling ADAM10 promoted α-secretase activity and the non-amyloidogenic cleavage of amyloid-ß precursor protein (APP), thereby increasing the production of the neuroprotective soluble ectodomain (sAPPα). Our bioengineering strategy has the potential to be exploited as a next-generation gene therapy for AD.


Assuntos
Proteínas ADAM , Doença de Alzheimer , Animais , Humanos , Proteínas ADAM/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Bioengenharia , Mamíferos/metabolismo
5.
PLoS Comput Biol ; 14(8): e1006321, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071020

RESUMO

Cellular morphology and associated morphodynamics are widely used for qualitative and quantitative assessments of cell state. Here we implement a framework to profile cellular morphodynamics based on an adaptive decomposition of local cell boundary motion into instantaneous frequency spectra defined by the Hilbert-Huang transform (HHT). Our approach revealed that spontaneously migrating cells with approximately homogeneous molecular makeup show remarkably consistent instantaneous frequency distributions, though they have markedly heterogeneous mobility. Distinctions in cell edge motion between these cells are captured predominantly by differences in the magnitude of the frequencies. We found that acute photo-inhibition of Vav2 guanine exchange factor, an activator of the Rho family of signaling proteins coordinating cell motility, produces significant shifts in the frequency distribution, but does not affect frequency magnitude. We therefore concluded that the frequency spectrum encodes the wiring of the molecular circuitry that regulates cell boundary movements, whereas the magnitude captures the activation level of the circuitry. We also used HHT spectra as multi-scale spatiotemporal features in statistical region merging to identify subcellular regions of distinct motion behavior. In line with our conclusion that different HHT spectra relate to different signaling regimes, we found that subcellular regions with different morphodynamics indeed exhibit distinct Rac1 activities. This algorithm thus can serve as an accurate and sensitive classifier of cellular morphodynamics to pinpoint spatial and temporal boundaries between signaling regimes.


Assuntos
Movimento Celular/fisiologia , Forma Celular/fisiologia , Análise Espaço-Temporal , Algoritmos , Animais , Células COS , Chlorocebus aethiops , Análise de Dados , Fatores de Troca do Nucleotídeo Guanina , Movimento (Física) , Proteínas Proto-Oncogênicas c-vav/fisiologia , Transdução de Sinais , Análise Espacial
6.
Nat Chem Biol ; 12(10): 802-809, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27501396

RESUMO

Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI-Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Análise Espaço-Temporal
7.
J Biol Chem ; 291(8): 3682-92, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26668308

RESUMO

Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, ß, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1ßα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1ß and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1ß interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state.


Assuntos
Canais Epiteliais de Sódio/química , Modelos Moleculares , Mutação de Sentido Incorreto , Sódio/química , Regulação Alostérica , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Ratos , Sódio/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 111(34): 12420-5, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118278

RESUMO

The Src kinase family comprises nine homologous members whose distinct expression patterns and cellular distributions indicate that they have unique roles. These roles have not been determined because genetic manipulation has not produced clearly distinct phenotypes, and the kinases' homology complicates generation of specific inhibitors. Through insertion of a modified FK506 binding protein (insertable FKBP12, iFKBP) into the protein kinase isoforms Fyn, Src, Lyn, and Yes, we engineered kinase analogs that can be activated within minutes in living cells (RapR analogs). Combining our RapR analogs with computational tools for quantifying and characterizing cellular dynamics, we demonstrate that Src family isoforms produce very different phenotypes, encompassing cell spreading, polarized motility, and production of long, thin cell extensions. Activation of Src and Fyn led to patterns of kinase translocation that correlated with morphological changes in temporally distinct stages. Phenotypes were dependent on N-terminal acylation, not on Src homology 3 (SH3) and Src homology 2 (SH2) domains, and correlated with movement between a perinuclear compartment, adhesions, and the plasma membrane.


Assuntos
Quinases da Família src/química , Quinases da Família src/metabolismo , Acilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Fenômenos Biofísicos , Células COS , Chlorocebus aethiops , Ativação Enzimática , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenótipo , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Domínios de Homologia de src , Quinases da Família src/genética
9.
Proc Natl Acad Sci U S A ; 110(17): 6800-4, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569285

RESUMO

Design of a regulatable multistate protein is a challenge for protein engineering. Here we design a protein with a unique topology, called uniRapR, whose conformation is controlled by the binding of a small molecule. We confirm switching and control ability of uniRapR in silico, in vitro, and in vivo. As a proof of concept, uniRapR is used as an artificial regulatory domain to control activity of kinases. By activating Src kinase using uniRapR in single cells and whole organism, we observe two unique phenotypes consistent with its role in metastasis. Activation of Src kinase leads to rapid induction of protrusion with polarized spreading in HeLa cells, and morphological changes with loss of cell-cell contacts in the epidermal tissue of zebrafish. The rational creation of uniRapR exemplifies the strength of computational protein design, and offers a powerful means for targeted activation of many pathways to study signaling in living organisms.


Assuntos
Ativação Enzimática/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas/métodos , Proteínas/química , Animais , Biologia Computacional/métodos , Células HeLa , Humanos , Ligantes , Termodinâmica , Peixe-Zebra , Quinases da Família src/metabolismo
10.
Biochemistry ; 52(40): 7082-90, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24011356

RESUMO

The short cytoplasmic tails of the α- and ß-chains of integrin adhesion receptors regulate integrin activation and cell signaling. Significantly less is known about proteins that bind to α-integrin cytoplasmic tails (CTs) as opposed to ß-CTs to regulate integrins. Calcium and integrin binding protein 1 (CIB1) was previously identified as an αIIb binding partner that inhibits agonist-induced activation of the platelet-specific integrin, αIIbß3. A sequence alignment of all α-integrin CTs revealed that key residues in the CIB1 binding site of αIIb are well-conserved, and was used to delineate a consensus binding site (I/L-x-x-x-L/M-W/Y-K-x-G-F-F). Because the CIB1 binding site of αIIb is conserved in all α-integrins and CIB1 expression is ubiquitous, we asked if CIB1 could interact with other α-integrin CTs. We predicted that multiple α-integrin CTs were capable of binding to the same hydrophobic binding pocket on CIB1 with docking models generated by all-atom replica exchange discrete molecular dynamics. After demonstrating novel in vivo interactions between CIB1 and other whole integrin complexes with co-immunoprecipitations, we validated the modeled predictions with solid-phase competitive binding assays, which showed that other α-integrin CTs compete with the αIIb CT for binding to CIB1 in vitro. Isothermal titration calorimetry measurements indicated that this binding is driven by hydrophobic interactions and depends on residues in the CIB1 consensus binding site. These new mechanistic details of CIB1-integrin binding imply that CIB1 could bind to all integrin complexes and act as a broad regulator of integrin function.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cadeias alfa de Integrinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Ligação Proteica , Alinhamento de Sequência
11.
Sci Adv ; 9(46): eadh1110, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967196

RESUMO

Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.


Assuntos
Actinas , Hipocampo , Camundongos , Animais , Actinas/metabolismo , Hipocampo/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Fosforilação/fisiologia , Plasticidade Neuronal/fisiologia
12.
Bioeng Transl Med ; 7(2): e10292, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600650

RESUMO

Engineered proteases are promising tools to address physiological and pathophysiological questions as well as to develop new therapeutic approaches. Here we introduce a new genetically encoded engineered single-chain tobacco etch virus protease, allowing to control proprotein cleavage in different compartments of living mammalian cells. We demonstrated a set of controllable proteolytic effects, including cytosolic protein cleavage, inducible gene expression, and maturation of brain-derived neurotrophic factor (BDNF) in the secretory pathway thus showing the versatility of this technique. Of note, the secretory pathway exhibits different characteristics from the cytosol and it is difficult to target because inaccessible to some small molecules. We were able to induce ligand-mediated BDNF maturation and monitor its effects on dendritic spines in hippocampal pyramidal cells and in the mouse brain. This strategy paves the way to dissect proteolytic cleavage product signaling in various processes as well as for future therapeutic applications.

13.
Nat Commun ; 13(1): 430, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058453

RESUMO

Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-ß (Aß). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aß. Furthermore, in mhCOs, we observed reduced expression of Aß-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aß using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.


Assuntos
Córtex Cerebral/metabolismo , Microglia/metabolismo , Organoides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Sistemas CRISPR-Cas/genética , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Organoides/metabolismo , Fagocitose/efeitos dos fármacos , Análise de Célula Única
14.
Cell Rep ; 31(11): 107764, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553168

RESUMO

We address whether combinations with a pan-RAF inhibitor (RAFi) would be effective in KRAS mutant pancreatic ductal adenocarcinoma (PDAC). Chemical library and CRISPR genetic screens identify combinations causing apoptotic anti-tumor activity. The most potent combination, concurrent inhibition of RAF (RAFi) and ERK (ERKi), is highly synergistic at low doses in cell line, organoid, and rat models of PDAC, whereas each inhibitor alone is only cytostatic. Comprehensive mechanistic signaling studies using reverse phase protein array (RPPA) pathway mapping and RNA sequencing (RNA-seq) show that RAFi/ERKi induced insensitivity to loss of negative feedback and system failures including loss of ERK signaling, FOSL1, and MYC; shutdown of the MYC transcriptome; and induction of mesenchymal-to-epithelial transition. We conclude that low-dose vertical inhibition of the RAF-MEK-ERK cascade is an effective therapeutic strategy for KRAS mutant PDAC.


Assuntos
Apoptose/genética , Carcinoma Ductal Pancreático/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Pancreáticas
15.
J Chem Inf Model ; 49(10): 2403-11, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19777996

RESUMO

Virtual screening of chemical libraries following experimental assays of drug candidates is a common procedure in structure based drug discovery. However, the relationship between binding free energies and biological activities (pIC50) of drug candidates is still an unsolved issue that limits the efficiency and speed of drug development processes. In this study, the relationship between them is investigated based on a common molecular descriptor set for human cytochrome P450 enzymes (CYPs). CYPs play an important role in drug-drug interactions, drug metabolism, and toxicity. Therefore, in silico prediction of CYP inhibition by drug candidates is one of the major considerations in drug discovery. The combination of partial least-squares regression (PLSR) and a variety of classification algorithms were employed by considering this relationship as a classification problem. Our results indicate that PLSR with classification is a powerful tool to predict more than one output such as binding free energy and pIC50 simultaneously. PLSR with mixed-integer linear programming based hyperboxes predicts the binding free energy and pIC50 with a mean accuracy of 87.18% (min: 81.67% max: 97.05%) and 88.09% (min: 79.83% max: 92.90%), respectively, for the cytochrome p450 superfamily using the common 6 molecular descriptors with a 10-fold cross-validation.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Termodinâmica , Algoritmos , Sistema Enzimático do Citocromo P-450/química , Descoberta de Drogas , Inibidores Enzimáticos/classificação , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
16.
Curr Opin Struct Biol ; 57: 17-22, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849716

RESUMO

Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.


Assuntos
Luz , Optogenética/métodos , Conformação Proteica/efeitos da radiação , Regulação Alostérica/efeitos da radiação , Domínio Catalítico/efeitos da radiação
17.
Nat Protoc ; 14(6): 1863-1883, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31076662

RESUMO

Control of protein activity in living cells can reveal the role of spatiotemporal dynamics in signaling circuits. Protein analogs with engineered allosteric responses can be particularly effective in the interrogation of protein signaling, as they can replace endogenous proteins with minimal perturbation of native interactions. However, it has been a challenge to identify allosteric sites in target proteins where insertion of responsive domains produces an allosteric response comparable to the activity of native proteins. Here, we describe a detailed protocol to generate genetically encoded analogs of proteins that can be allosterically controlled by either rapamycin or blue light, as well as experimental procedures to produce and test these analogs in vitro and in mammalian cell lines. We describe computational methods, based on crystal structures or homology models, to identify effective sites for insertion of either an engineered rapamycin-responsive (uniRapR) domain or the light-responsive light-oxygen-voltage 2 (LOV2) domain. The inserted domains allosterically regulate the active site, responding to rapamycin with irreversible activation, or to light with reversible inactivation at higher spatial and temporal resolution. These strategies have been successfully applied to catalytic domains of protein kinases, Rho family GTPases, and guanine exchange factors (GEFs), as well as the binding domain of a GEF Vav2. Computational tasks can be completed within a few hours, followed by 1-2 weeks of experimental validation. We provide protocols for computational design, cloning, and experimental testing of the engineered proteins, using Src tyrosine kinase, GEF Vav2, and Rho GTPase Rac1 as examples.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/efeitos da radiação , Engenharia de Proteínas/métodos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/efeitos da radiação , Animais , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/efeitos da radiação , Linhagem Celular , Clonagem Molecular/métodos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Luz , Camundongos , Modelos Moleculares , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sirolimo/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
18.
Nat Commun ; 9(1): 4042, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279442

RESUMO

Controlling protein activity with chemogenetics and optogenetics has proven to be powerful for testing hypotheses regarding protein function in rapid biological processes. Controlling proteins by splitting them and then rescuing their activity through inducible reassembly offers great potential to control diverse protein activities. Building split proteins has been difficult due to spontaneous assembly, difficulty in identifying appropriate split sites, and inefficient induction of effective reassembly. Here we present an automated approach to design effective split proteins regulated by a ligand or by light (SPELL). We develop a scoring function together with an engineered domain to enable reassembly of protein halves with high efficiency and with reduced spontaneous assembly. We demonstrate SPELL by applying it to proteins of various shapes and sizes in living cells. The SPELL server (spell.dokhlab.org) offers an automated prediction of split sites.


Assuntos
Optogenética , Engenharia de Proteínas/métodos , Algoritmos , Automação , Inibidores de Dissociação do Nucleotídeo Guanina/química , Proteínas Proto-Oncogênicas c-vav/química , Proteína 1A de Ligação a Tacrolimo/química , Quinases da Família src/química
19.
ACS Synth Biol ; 6(7): 1257-1262, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28365983

RESUMO

P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineered domain inserted away from the active site responds to rapamycin to allosterically control activity of the PAK1 isoform. To examine the mechanism of rapamycin-induced PAK1 activation, we used molecular dynamics with graph theory to predict amino acids involved in allosteric communication with the active site. This analysis revealed allosteric pathways that were exploited to generate kinase switches. Activation of PAK1 resulted in transient cell spreading in metastatic breast cancer cells, and long-term dendritic spine enlargement in mouse hippocampal CA1 neurons.


Assuntos
Regulação Alostérica/fisiologia , Quinases Ativadas por p21/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Região CA1 Hipocampal/metabolismo , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Quinases Ativadas por p21/genética
20.
Science ; 354(6318): 1441-1444, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27980211

RESUMO

Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches.


Assuntos
Luz , Engenharia de Proteínas , Quinases da Família src , Regulação Alostérica/genética , Regulação Alostérica/efeitos da radiação , Sítio Alostérico , Domínio Catalítico , Ativação Enzimática/genética , Ativação Enzimática/efeitos da radiação , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/efeitos da radiação , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Ligantes , Optogenética , Domínios Proteicos/efeitos da radiação , Proteínas Proto-Oncogênicas c-vav/química , Transdução de Sinais , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/química , Quinases da Família src/genética , Quinases da Família src/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA