RESUMO
Natural fiber-reinforced composites perform poorly when exposed to moisture. Biocarbon has been proven to improve the water-absorbing behavior of natural fiber composites. However, the interaction effect of the design parameters on the biocarbon-filled hemp fiber-reinforced bio-epoxy composites has not been studied. In this study, the effects of the design parameters (pyrolysis temperature, biocarbon particle size, and filler loading) on the water absorptivity and water diffusivity of hemp-reinforced biopolymer composites have been investigated. Biocarbon from the pyrolysis of hemp and switchgrass was produced at 450, 550, and 650 °C. Composite samples with 10 wt.%, 15 wt.%, and 20 wt.% of biocarbon fillers of sizes below 50, 75, and 100 microns were used. The hemp fiber in polymer composites showed a significant influence in its water uptake behavior with the value of water absorptivity 2.41 × 10-6 g/m2.s1/2. The incorporation of biocarbon fillers in the hemp biopolymer composites reduces the average water absorptivity by 44.17% and diffusivity by 42.02%. At the optimized conditions, the value of water absorptivity with hemp biocarbon and switchgrass biocarbon fillers was found to be 0.72 × 10-6 g/m2.s1/2 and 0.73 × 10-6 g/m2.s1/2, respectively. The biocarbon at 650 °C showed the least composite thickness swelling due to its higher porosity and lower surface area. Biocarbon-filled hemp composites showed higher flexural strength and energy at the break due to the enhanced mechanical interlocking between the filler particles and the matrix materials. Smaller filler particle size lowered the composite's water diffusivity, whereas the larger particle size of the biocarbon fillers in composites minimizes the water absorption. Additionally, higher filler loading results in weaker composite tensile energy at the break due to the filler agglomeration, reduced polymer-filler interactions, reduced polymer chain mobility, and inadequate dispersion of the filler.
Assuntos
Cannabis , Água , Fenômenos Químicos , Tamanho da Partícula , PolímerosRESUMO
We investigated the thermal conductivity of materials based on pyrolysis temperature, filler loading, filler size, and type of biomass feedstock. Hemp stalk and switchgrass were pyrolyzed at 450, 550, and 650 °C and crushed into 50, 75, and 100 µm particle sizes. Biocarbon fillers (10, 15, and 20 wt %) were added to the bioepoxy polymer matrix. The study showed increased filler loading and particle size increased thermal conductivity-the biocomposite samples with 20 wt % filler loading of 100 µm particle size of the biocarbon obtained at 650 °C showed the maximum thermal conductivity in both hemp biocarbon-filled composites (0.59 W·m-1·K-1) and switchgrass-filled composites (0.58 W·m-1·K-1) with the highest flame time. Biocarbon in biofiber-reinforced polymer composites can improve thermal conductivity and extend the flame time. These findings significantly contribute to developing hemp-based bioepoxy composite materials for thermal applications in various fields. These include insulating materials for buildings and thermal management systems, energy-efficient applications, and help in material selection and product design with a positive environmental impact.
RESUMO
The emergence and spread of antibiotic resistance, as well as the evolution of new strains of disease causing agents, are of great concern to the global health community. Effective treatment of a disease entails the development of new pharmaceuticals or some potential source of novel drugs. Commonly used medicinal plants of our community could be an excellent source of drugs to fight off this problem. This study is focused on exploring the antimicrobial properties of the plants that are commonly being used as traditional medicines. The antimicrobial potential of four different plant extracts was screened against twelve pathogenic microorganisms and two reference bacterial strains. Methanolic extracts of Oxalis corniculata, Artemisia vulgaris, Cinnamomum tamala, and Ageratina adenophora were subjected to a test of their antimicrobial properties by agar well diffusion method. The result indicated that most of the extracts exhibited antimicrobial properties. The highest potential was observed in the extract of O. corniculata against Escherichia coli, Salmonella Typhi, MDR Salmonella Typhi, Klebsiella pneumoniae, and Citrobacter koseri with zone of inhibition (ZOI) of 17 mm, 13 mm, 16 mm, 11 mm, and 12 mm, respectively. Oxalis corniculata also showed the highest MIC against test organisms. The methanolic extract of Artemisia vulgaris, Cinnamomum tamala, and Ageratina adenophora showed efficacy against Staphylococcus aureus. Ageratina adenophora also showed antifungal activity against Rhizopus spp. The experiment confirmed the efficacy of some selected plant extracts as natural antimicrobials and suggested the possibility of employing them in drugs for the treatment of infectious diseases caused by the test organisms.