Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Am Chem Soc ; 145(4): 2342-2353, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669196

RESUMO

Investigating the ecological context of microbial predator-prey interactions enables the identification of microorganisms, which produce multiple secondary metabolites to evade predation or to kill the predator. In addition, genome mining combined with molecular biology methods can be used to identify further biosynthetic gene clusters that yield new antimicrobials to fight the antimicrobial crisis. In contrast, classical screening-based approaches have limitations since they do not aim to unlock the entire biosynthetic potential of a given organism. Here, we describe the genomics-based identification of keanumycins A-C. These nonribosomal peptides enable bacteria of the genus Pseudomonas to evade amoebal predation. While being amoebicidal at a nanomolar level, these compounds also exhibit a strong antimycotic activity in particular against the devastating plant pathogen Botrytis cinerea and they drastically inhibit the infection of Hydrangea macrophylla leaves using only supernatants of Pseudomonas cultures. The structures of the keanumycins were fully elucidated through a combination of nuclear magnetic resonance, tandem mass spectrometry, and degradation experiments revealing an unprecedented terminal imine motif in keanumycin C extending the family of nonribosomal amino acids by a highly reactive building block. In addition, chemical synthesis unveiled the absolute configuration of the unusual dihydroxylated fatty acid of keanumycin A, which has not yet been reported for this lipodepsipeptide class. Finally, a detailed genome-wide microarray analysis of Candida albicans exposed to keanumycin A shed light on the mode-of-action of this potential natural product lead, which will aid the development of new pharmaceutical and agrochemical antifungals.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Aminoácidos/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Genômica , Família Multigênica
2.
Planta Med ; 88(5): 380-388, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34352920

RESUMO

Pyrethrum pulchrum is a rare Mongolian plant species that has been traditionally used as an ingredient in various remedies. Bioactivity-guided fractionation performed on the methanol extract of its aerial parts led to the isolation of 2 previously undescribed guaianolide-type sesquiterpene lactones, namely 1ß,10ß-epoxy-8α-hydroxyguaia-3,11(13)-dien-6,12-olide (1: ) and 1,8,10-trihydroxyguaia-3,11(13)-dien-6,12-olide (2: ), along with the isolation or chromatographic identification of 11 compounds, arglabin (3: ), 3ß-hydroxycostunolide (4: ), isocostic acid (5: ), (E)-9-(2-thienyl)-6-nonen-8-yn-3-ol (6: ), (Z)-9-(2-thienyl)-6-nonen-8-yn-3-ol (7: ), N 1,N 5,N 10,N 14-tetra-p-coumaroyl spermine (8: ), chlorogenic acid (9: ), 3,5-di-O-caffeoylquinic acid (10: ), 3,5-di-O-caffeoylquinic acid methyl ester (11: ), 3,4-di-O-caffeoylquinic acid (12: ), and tryptophan (13: ). Their structures were assigned based on spectroscopic and spectrometric data. The antimicrobial, antiproliferative and cytotoxic activities of selected compounds were evaluated. The new compounds showed weak to moderate antimicrobial activity. Arglabin (3: ), the major sesquiterpene lactone found in the methanol extract of P. pulchrum, exhibited the highest activity against human cancer lines, while compound 1: also possesses significant antiproliferative activity against leukemia cells.


Assuntos
Asteraceae , Chrysanthemum cinerariifolium , Sesquiterpenos , Asteraceae/química , Lactonas/química , Metanol , Compostos Fitoquímicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos/química
3.
Chemistry ; 27(45): 11633-11642, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032329

RESUMO

The first total synthesis of the actin-stabilizing marine natural product geodiamolide H was achieved. Solid-phase based peptide assembly paired with scalable stereoselective syntheses of polyketide building blocks and an optimized esterification set the stage for investigating the key ring-closing metathesis. Geodiamolide H and synthetic analogues were characterized for their toxicity and for antiproliferative effects in cellulo, by characterising actin polymerization induction in vitro, and by docking on the F-actin target and property computation in silico, for a better understanding of structure-activity relationships (SAR). A non-natural analogue of geodiamolide H was discovered to be most potent in the series, suggesting significant potential for tool compound design.


Assuntos
Produtos Biológicos , Depsipeptídeos , Actinas , Depsipeptídeos/farmacologia , Humanos , Estereoisomerismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830260

RESUMO

Axenic fermentation on solid rice of the saprobic fungus Sparticola junci afforded two new highly oxidized naphthalenoid polyketide derivatives, sparticatechol A (1) and sparticolin H (2) along with sparticolin A (3). The structures of 1 and 2 were elucidated on the basis of their NMR and HR-ESIMS spectroscopic data. Assignment of absolute configurations was performed using electronic circular dichroism (ECD) experiments and Time-Dependent Density Functional Theory (TDDFT) calculations. Compounds 1-3 were evaluated for COX inhibitory, antiproliferative, cytotoxic and antimicrobial activities. Compounds 1 and 2 exhibited strong inhibitory activities against COX-1 and COX-2. Molecular docking analysis of 1 conferred favorable binding against COX-2. Sparticolin H (2) and A (3) showed a moderate antiproliferative effect against myelogenous leukemia K-562 cells and weak cytotoxicity against HeLa and mouse fibroblast cells.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Fibroblastos/efeitos dos fármacos , Policetídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cultura Axênica/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Fermentação , Fibroblastos/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação
5.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771113

RESUMO

Phytochemical investigation of the ethanol extract of underground parts of Iris tenuifolia Pall. afforded five new compounds; an unusual macrolide termed moniristenulide (1), 5-methoxy-6,7-methylenedioxy-4-O-2'-cycloflavan (2), 5,7,2',3'-tetrahydroxyflavanone (3), 5-hydroxy-6,7-dimethoxyisoflavone-2'-O-ß-d-glucopyranoside (9), 5,2',3'-dihydroxy-6,7-dimethoxyisoflavone (10), along with seven known compounds (4-8, 11-12). The structures of all purified compounds were established by analysis of 1D and 2D NMR spectroscopy and HR-ESI-MS. The antimicrobial activity of the compounds 1-3, 5, 9, and 10 was investigated using the agar diffusion method against fungi, Gram-positive and Gram-negative bacteria. In consequence, new compound 3 was found to possess the highest antibacterial activity against Enterococcus faecalis VRE and Mycobacterium vaccae. Cell proliferation and cytotoxicity tests were also applied on all isolated compounds and plant crude extract in vitro with the result of potent inhibitory effect against leukemia cells. In particular, the newly discovered isoflavone 10 was active against both of the leukemia cells K-562 and THP-1 while 4-6 of the flavanone type compounds were active against only THP-1.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cromanos/farmacologia , Gênero Iris/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromanos/química , Relação Dose-Resposta a Droga , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química
6.
Environ Microbiol ; 22(9): 3722-3740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583550

RESUMO

Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Macrófagos Alveolares/fisiologia , Mucorales/metabolismo , Animais , Anticorpos/farmacologia , Aspergillus fumigatus , Linhagem Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Camundongos , Fagocitose/efeitos dos fármacos , Proteômica , Esporos Fúngicos
7.
Angew Chem Int Ed Engl ; 59(20): 7766-7771, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32040253

RESUMO

A spider-transmitted fungus (Rhizopus microsporus) that was isolated from necrotic human tissue was found to harbor endofungal bacteria (Burkholderia sp.). Metabolic profiling of the symbionts revealed a complex of cytotoxic agents (necroximes). Their structures were characterized as oxime-substituted benzolactone enamides with a peptidic side chain. The potently cytotoxic necroximes are also formed in symbiosis with the fungal host and could have contributed to the necrosis. Genome sequencing and computational analyses revealed a novel modular PKS/NRPS assembly line equipped with several non-canonical domains. Based on gene-deletion mutants, we propose a biosynthetic model for bacterial benzolactones. We identified specific traits that serve as genetic handles to find related salicylate macrolide pathways (lobatamide, oximidine, apicularen) in various other bacterial genera. Knowledge of the biosynthetic pathway enables biosynthetic engineering and genome-mining approaches.


Assuntos
Mineração de Dados , Lactonas/metabolismo , Rhizopus/metabolismo , Aranhas/microbiologia , Simbiose , Animais , Genômica , Lactonas/toxicidade , Rhizopus/genética , Rhizopus/fisiologia
8.
Environ Microbiol ; 21(12): 4563-4581, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31330072

RESUMO

Mucormycoses are life-threatening infections that affect patients suffering from immune deficiencies. We performed phagocytosis assays confronting various strains of Lichtheimia species with alveolar macrophages, which form the first line of defence of the innate immune system. To investigate 17 strains from four different continents in a comparative fashion, transmitted light and confocal fluorescence microscopy was applied in combination with automated image analysis. This interdisciplinary approach enabled the objective and quantitative processing of the big volume of image data. Applying machine-learning supported methods, a spontaneous clustering of the strains was revealed in the space of phagocytic measures. This clustering was not driven by measures of fungal morphology but rather by the geographical origin of the fungal strains. Our study illustrates the crucial contribution of machine-learning supported automated image analysis to the qualitative discovery and quantitative comparison of major factors affecting host-pathogen interactions. We found that the phagocytic vulnerability of Lichtheimia species depends on their geographical origin, where strains within each geographic region behaved similarly, but strongly differed amongst the regions. Based on this clustering, we were able to also classify clinical isolates with regard to their potential geographical origin.


Assuntos
Macrófagos Alveolares/imunologia , Mucorales/imunologia , Fagocitose/imunologia , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/isolamento & purificação , Células Cultivadas , Microbiologia Ambiental , Interações Hospedeiro-Patógeno , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Tipagem Molecular , Mucorales/classificação , Mucorales/isolamento & purificação , Mucormicose/imunologia , Mucormicose/microbiologia , Filogeografia
9.
Plant Foods Hum Nutr ; 74(2): 223-224, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887272

RESUMO

Duckweeds (Lemnaceae) possess good qualitative and quantitative profiles of nutritional components for its use as human food. However, no studies have been conducted on the probable presence or absence of any adverse effects. The extracts from seven duckweed species (Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Lemna minor, Wolffiella hyalina, Wolffia globosa, and Wolffia microscopica) covering all five genera of the plant family were herewith tested for cytotoxic effects on the human cell lines HUVEC, K-562, and HeLa and for anti-proliferative activity on HUVEC and K-562 cell lines. From these assays, it is evident that duckweeds do not possess any detectable anti-proliferative or cytotoxic effects, thus, the high nutritional value is not diminished by such detrimental factors. The present result is a first step to exclude any harmful effects of highly nutritious duckweed for human.


Assuntos
Araceae/química , Valor Nutritivo , Extratos Vegetais/efeitos adversos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos
10.
J Infect Dis ; 217(3): 358-370, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28968817

RESUMO

Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células Endoteliais/patologia , Fibrinolisina/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Plasminogênio/metabolismo , Streptococcus pneumoniae/fisiologia , Pré-Escolar , Feminino , Humanos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Streptococcus pneumoniae/isolamento & purificação
11.
Angew Chem Int Ed Engl ; 58(40): 14129-14133, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353766

RESUMO

Burkholderia species such as B. mallei and B. pseudomallei are bacterial pathogens causing fatal infections in humans and animals (glanders and melioidosis), yet knowledge on their virulence factors is limited. While pathogenic effects have been linked to a highly conserved gene locus (bur/mal) in the B. mallei group, the metabolite associated to the encoded polyketide synthase, burkholderic acid (syn. malleilactone), could not explain the observed phenotypes. By metabolic profiling and molecular network analyses of the model organism B. thailandensis, the primary products of the cryptic pathway were identified as unusual cyclopropanol-substituted polyketides. First, sulfomalleicyprols were identified as inactive precursors of burkholderic acid. Furthermore, a highly reactive upstream metabolite, malleicyprol, was discovered and obtained in two stabilized forms. Cell-based assays and a nematode infection model showed that the rare natural product confers cytotoxicity and virulence.


Assuntos
Burkholderia/metabolismo , Éteres Cíclicos/metabolismo , Policetídeos/metabolismo , Fatores de Virulência/metabolismo , Animais , Burkholderia/genética , Burkholderia/patogenicidade , Caenorhabditis elegans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Éteres Cíclicos/química , Éteres Cíclicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células K562 , Estrutura Molecular , Policetídeos/química , Policetídeos/farmacologia , Virulência , Fatores de Virulência/química , Fatores de Virulência/farmacologia
12.
Chembiochem ; 19(21): 2307-2311, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30160345

RESUMO

Cyclic peptides containing non-proteinogenic amino acids often exhibit a broad bioactivity spectrum and many have entered clinical trials with good prospects for drug development. We recently reported the discovery of six cyclic tetrapeptides, pseudoxylallemycins A-F (1-6), from a termite-associated Pseudoxylaria sp. X802. These compounds contain a rare O-homoallenyl-l-tyrosine moiety and show promising antimicrobial activity against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa. To perform more detailed structure-activity studies, we pursued a precursor-directed diversification strategy. Herein, we report the purification, identification, and testing of 21 new pseudoxylallemycin derivatives.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Isópteros/microbiologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Relação Estrutura-Atividade
13.
Molecules ; 23(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567384

RESUMO

Nudicaulins are yellow flower pigments accounting for the color of the petals of Papaver nudicaule (Papaveraceae). These glucosidic compounds belong to the small group of indole/flavonoid hybrid alkaloids. Here we describe in vivo and in vitro experiments which substantiate the strongly pH-dependent conversion of pelargonidin glucosides to nudicaulins as the final biosynthetic step of these alkaloids. Furthermore, we report the first synthesis of nudicaulin aglycon derivatives, starting with quercetin and ending up at the biomimetic fusion of a permethylated anthocyanidin with indole. A small library of nudicaulin derivatives with differently substituted indole units was prepared, and the antimicrobial, antiproliferative and cell toxicity data of the new compounds were determined. The synthetic procedure is considered suitable for preparing nudicaulin derivatives which are structurally modified in the indole and/or the polyphenolic part of the molecule and may have optimized pharmacological activities.


Assuntos
Bioensaio/métodos , Biomimética , Alcaloides Indólicos/análise , Estrutura Molecular
14.
Nat Prod Rep ; 34(4): 343-360, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28271107

RESUMO

Covering up to September 2016This review reports on natural compounds that derive from the isoxazolinone ring as well as the 3-nitropropanoic acid (3-NPA) moiety. These structural elements occur in compounds that have been identified in plants, insects, bacteria and fungi. In particular, plants belonging to the family of legumes produce such compounds. In the case of insects, isoxazolin-5-one and 3-NPA derivatives were found in leaf beetles of the subtribe Chrysomelina. A number of these natural products have been synthesized so far. In the case of the single compound 3-NPA, several synthetic strategies have been reported and some of the most efficient routes are reviewed. The toxicity of 3-NPA results from its ability to bind covalently to the catalytic center of succinate dehydrogenase causing irreversible inhibition of mitochondrial respiration. As a motif that is produced by many species of plants, leaf beetles and fungi, different detoxification mechanisms for 3-NPA have evolved in different species. These mechanisms are based on amide formation of 3-NPA with amino acids, reduction to ß-alanine, ester formation or oxidation to malonic acid semialdehyde. The biosynthetic pathways of 3-NPA and isoxazolin-5-one moieties have been studied in fungi, plants and leaf beetles. In the case of fungi, 3-NPA derives from aspartate, while leaf beetles use essential amino acids such as valine as ultimate precursors. In the case of plants, it is supposed that malonate serves as a precursor of 3-NPA, as indicated by feeding of 14C-labeled precursors to Indigofera spicata. In other leguminous plants it is suggested that asparagine is incorporated into compounds that derive from isoxazolin-5-one, which was indicated by 14C-labeled compounds as well. In the case of leaf beetles it was demonstrated that detection of radioactivity after 14C-labeling from a few precursors is not sufficient to unravel biosynthetic pathways.


Assuntos
Produtos Biológicos/química , Isoxazóis/química , Nitrocompostos/química , Propionatos/química , Animais , Produtos Biológicos/isolamento & purificação , Isoxazóis/isolamento & purificação , Estrutura Molecular , Nitrocompostos/isolamento & purificação , Propionatos/isolamento & purificação
15.
J Neuroinflammation ; 14(1): 4, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28086806

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. The polymorphism rs10490924 in the ARMS2 gene is highly associated with AMD and linked to an indel mutation (del443ins54), the latter inducing mRNA instability. At present, the function of the ARMS2 protein, the exact cellular sources in the retina and the biological consequences of the rs10490924 polymorphism are unclear. METHODS: Recombinant ARMS2 was expressed in Pichia pastoris, and protein functions were studied regarding cell surface binding and complement activation in human serum using fluoresence-activated cell sorting (FACS) as well as laser scanning microscopy (LSM). Biolayer interferometry defined protein interactions. Furthermore, endogenous ARMS2 gene expression was studied in human blood derived monocytes and in human induced pluripotent stem cell-derived microglia (iPSdM) by PCR and LSM. The ARMS2 protein was localized in human genotyped retinal sections and in purified monocytes derived from AMD patients without the ARMS2 risk variant by LSM. ARMS2 expression in monocytes under oxidative stress was determined by Western blot analysis. RESULTS: Here, we demonstrate for the first time that ARMS2 functions as surface complement regulator. Recombinant ARMS2 binds to human apoptotic and necrotic cells and initiates complement activation by recruiting the complement activator properdin. ARMS2-properdin complexes augment C3b surface opsonization for phagocytosis. We also demonstrate for the first time expression of ARMS2 in human monocytes especially under oxidative stress and in microglia cells of the human retina. The ARMS2 protein is absent in monocytes and also in microglia cells, derived from patients homozygous for the ARMS2 AMD risk variant (rs10490924). CONCLUSIONS: ARMS2 is likely involved in complement-mediated clearance of cellular debris. As AMD patients present with accumulated proteins and lipids on Bruch's membrane, ARMS2 protein deficiency due to the genetic risk variant might be involved in drusen formation.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Células CHO , Proteínas do Sistema Complemento/genética , Cricetulus , Feminino , Heparitina Sulfato/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Fatores Imunológicos/farmacologia , Degeneração Macular/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Properdina/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/imunologia , Proteínas/metabolismo , Retina/metabolismo , Retina/patologia , Adulto Jovem
16.
Chemistry ; 23(39): 9338-9345, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28463423

RESUMO

The discovery of six new, highly substituted tropolone alkaloids, rubterolones A-F, from Actinomadura sp. 5-2, isolated from the gut of the fungus-growing termite Macrotermes natalensis is reported. Rubterolones were identified by using fungus-bacteria challenge assays and a HRMS-based dereplication strategy, and characterised by NMR and HRMS analyses and by X-ray crystallography. Feeding experiments and subsequent chemical derivatisation led to a first library of rubterolone derivatives (A-L). Genome sequencing and comparative analyses revealed their putative biosynthetic pathway, which was supported by feeding experiments. This study highlights how gut microbes can present a prolific source of secondary metabolites.


Assuntos
Actinomycetales/química , Alcaloides/biossíntese , Tropolona/química , Actinomycetales/classificação , Actinomycetales/genética , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Intestinos/microbiologia , Isópteros/microbiologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Família Multigênica , Filogenia , Sequenciamento Completo do Genoma
17.
J Nat Prod ; 80(12): 3319-3323, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29172496

RESUMO

Two new chlorine-containing polyoxygenated seco-cyclohexenes, albanols A (1) and B (2), along with the oxepinone metabolite grandiuvarone (3) were isolated from the endemic Philippine Annonaceae plant Uvaria alba. Both new compounds exhibited modest antitubercular activity. Compound 1 showed cytostatic activity (ranging from 1-50 µM) against HeLa cells and weak antiproliferative activity against HUVEC and K-562 cells with GI50 values of 106 and 81 µM, respectively.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Cloro/química , Cicloexenos/química , Cicloexenos/farmacologia , Uvaria/química , Annonaceae/química , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562
18.
Chembiochem ; 16(17): 2445-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26416255

RESUMO

The siderophore myxochelin A is a potent inhibitor of human 5-lipoxygenase (5-LO). To clarify whether the iron-chelating properties of myxochelin A are responsible for this activity, several analogues of this compound were generated in the native producer Pyxidicoccus fallax by precursor-directed biosynthesis. Testing in a cell-free assay unveiled three derivatives with bioactivity comparable with that of myxochelin A. Furthermore, it became evident that inhibition of 5-LO by myxochelins does not correlate with their iron affinities.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/metabolismo , Lisina/análogos & derivados , Araquidonato 5-Lipoxigenase/química , Humanos , Concentração Inibidora 50 , Inibidores de Lipoxigenase/química , Lisina/biossíntese , Lisina/química , Myxococcales/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
19.
Appl Environ Microbiol ; 81(5): 1594-600, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527545

RESUMO

The Aspergillus fumigatus nonribosomal peptide synthetase FtpA is among the few of this species whose natural product has remained unknown. Both FtpA adenylation domains were characterized in vitro. Fumaric acid was identified as preferred substrate of the first and both l-tyrosine and l-phenylalanine as preferred substrates of the second adenylation domain. Genetically engineered A. fumigatus strains expressed either ftpA or the regulator gene ftpR, encoded in the same cluster of genes, under the control of the doxycycline-inducible tetracycline-induced transcriptional activation (tet-on) cassette. These strains produced fumaryl-l-tyrosine and fumaryl-l-phenylalanine which were identified by liquid chromatography and high-resolution mass spectrometry. Modeling of the first adenylation domain in silico provided insight into the structural requirements to bind fumaric acid as peptide synthetase substrate. This work adds aromatic fumaric acid amides to the secondary metabolome of the important human pathogen A. fumigatus which was previously not known as a producer of these compounds.


Assuntos
Amidas/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Fumaratos/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Cromatografia Líquida , Expressão Gênica , Espectrometria de Massas , Família Multigênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
20.
J Nat Prod ; 78(2): 335-8, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25686392

RESUMO

Extracts of the predatory myxobacterium Pyxidicoccus fallax HKI 727 showed antiproliferative effects on leukemic K-562 cells. Bioactivity-guided fractionation led to the isolation of the bis-catechol myxochelin A and two new congeners. The biosynthetic origin of myxochelins C and D was confirmed by feeding studies with isotopically labeled precursors. Pharmacological testing revealed human 5-lipoxygenase (5-LO) as a molecular target of the myxochelins. In particular, myxochelin A efficiently inhibited 5-LO activity with an IC50 of 1.9 µM and reduced the proliferation of K-562 cells at similar concentrations.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Lisina/análogos & derivados , Myxococcales/química , Sideróforos/isolamento & purificação , Curcumina/química , Células HeLa , Humanos , Células K562 , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/isolamento & purificação , Lisina/química , Lisina/isolamento & purificação , Lisina/farmacologia , Estrutura Molecular , Sideróforos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA