Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Hum Mol Genet ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38970828

RESUMO

Systemic sclerosis (SSc) is a heterogeneous rare autoimmune fibrosing disorder affecting connective tissue. The etiology of systemic sclerosis is largely unknown and many genes have been suggested as susceptibility loci of modest impact by genome-wide association study (GWAS). Multiple factors can contribute to the pathological process of the disease, which makes it more difficult to identify possible disease-causing genetic alterations. In this study, we have applied whole genome sequencing (WGS) in 101 indexed family trios, supplemented with transcriptome sequencing on cultured fibroblast cells of four patients and five family controls where available. Single nucleotide variants (SNVs) and copy number variants (CNVs) were examined, with emphasis on de novo variants. We also performed enrichment test for rare variants in candidate genes previously proposed in association with systemic sclerosis. We identified 42 exonic and 34 ncRNA de novo SNV changes in 101 trios, from a total of over 6000 de novo variants genome wide. We observed higher than expected de novo variants in PRKXP1 gene. We also observed such phenomenon along with increased expression in patient group in NEK7 gene. Additionally, we also observed significant enrichment of rare variants in candidate genes in the patient cohort, further supporting the complexity/multi-factorial etiology of systemic sclerosis. Our findings identify new candidate genes including PRKXP1 and NEK7 for future studies in SSc. We observed rare variant enrichment in candidate genes previously proposed in association with SSc, which suggest more efforts should be pursued to further investigate possible pathogenetic mechanisms associated with those candidate genes.

2.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
J Med Genet ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621993

RESUMO

BACKGROUND: As one of the most common congenital abnormalities in male births, cryptorchidism has been found to have a polygenic aetiology according to previous studies of common variants. However, little is known about genetic predisposition of rare variants for cryptorchidism, since rare variants have larger effective size on diseases than common variants. METHODS: In this study, a cohort of 115 Chinese probands with cryptorchidism was analysed using whole-genome sequencing, alongside 19 parental controls and 2136 unaffected men. Additionally, CRISPR-Cas9 editing of a conserved variant was performed in a mouse model, with MRI screening used to observe the phenotype. RESULTS: In 30 of 115 patients (26.1%), we identified four novel genes (ARSH, DMD, MAGEA4 and SHROOM2) affecting at least five unrelated patients and four known genes (USP9Y, UBA1, BCORL1 and KDM6A) with the candidate rare pathogenic variants affecting at least two cases. Burden tests of rare variants revealed the genome-wide significances for newly identified genes (p<2.5×10-6) under the Bonferroni correction. Surprisingly, novel and known genes were mainly found on X chromosome (seven on X and one on Y) and all rare X-chromosomal segregating variants exhibited a maternal inheritance rather than de novo origin. CRISPR-Cas9 mouse modelling of a splice donor loss variant in DMD (NC_000023.11:g.32454661C>G), which resides in a conserved site across vertebrates, replicated bilateral cryptorchidism phenotypes, confirmed by MRI at 4 and 10 weeks. The movement tests further revealed symptoms of Duchenne muscular dystrophy (DMD) in transgenic mice. CONCLUSION: Our results revealed the role of the DMD gene mutation in causing cryptorchidism. The results also suggest that maternal-X inheritance of pathogenic defects could have a predominant role in the development of cryptorchidism.

4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
5.
Am J Med Genet A ; 194(1): 17-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743782

RESUMO

The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A>G) detected in one patient and p.(Glu477Lys) (c.1429G>A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Criança , Humanos , Deficiências do Desenvolvimento/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Convulsões/genética , Fenótipo , Marcha
6.
Prenat Diagn ; 44(2): 247-250, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37596871

RESUMO

Heterozygous loss-of-function variants in the PKD1 gene are commonly associated with adult-onset autosomal dominant polycystic kidney disease (ADPKD), where the formation of renal cysts depends on the dosage of the PKD1 gene. Biallelic null PKD1 variants are not viable, but biallelic hypomorphic variants could lead to early-onset PKD. We report a non-consanguineous Chinese family with recurrent fetal polycystic kidney and negative findings in the coding region of the PKHD1 gene or chromosomal microarray analysis. Trio exome analysis revealed compound heterozygous variants of uncertain significance in the PKD1 gene in the index pregnancy: a novel paternally inherited c.7863 + 5G > C and a maternally inherited c.9739C > T, p.(Arg3247Cys). Segregation analysis through long-range PCR followed by nested PCR and Sanger sequencing confirmed another affected fetus had both variants, while the other two normal siblings and the parents carried either variant. Thus, these two variants, both of which were hypomorphic as opposed to null variants, co-segregated with prenatal onset polycystic kidney disease in this family. Functional studies are needed to further determine the impact of these two variants. Our findings highlight the biallelic inheritance of hypomorphic PKD1 variants causing prenatal onset polycystic kidney disease, which provides a better understanding of phenotype-genotype correlation and valuable information for reproductive counseling.


Assuntos
Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Adulto , Feminino , Gravidez , Humanos , Canais de Cátion TRPP/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Diagnóstico Pré-Natal , Estudos de Associação Genética , Exoma , Mutação
7.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232675

RESUMO

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Genet Med ; 25(6): 100830, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36939041

RESUMO

PURPOSE: The analysis of exome and genome sequencing data for the diagnosis of rare diseases is challenging and time-consuming. In this study, we evaluated an artificial intelligence model, based on machine learning for automating variant prioritization for diagnosing rare genetic diseases in the Baylor Genetics clinical laboratory. METHODS: The automated analysis model was developed using a supervised learning approach based on thousands of manually curated variants. The model was evaluated on 2 cohorts. The model accuracy was determined using a retrospective cohort comprising 180 randomly selected exome cases (57 singletons, 123 trios); all of which were previously diagnosed and solved through manual interpretation. Diagnostic yield with the modified workflow was estimated using a prospective "production" cohort of 334 consecutive clinical cases. RESULTS: The model accurately pinpointed all manually reported variants as candidates. The reported variants were ranked in top 10 candidate variants in 98.4% (121/123) of trio cases, in 93.0% (53/57) of single proband cases, and 96.7% (174/180) of all cases. The accuracy of the model was reduced in some cases because of incomplete variant calling (eg, copy number variants) or incomplete phenotypic description. CONCLUSION: The automated model for case analysis assists clinical genetic laboratories in prioritizing candidate variants effectively. The use of such technology may facilitate the interpretation of genomic data for a large number of patients in the era of precision medicine.


Assuntos
Laboratórios Clínicos , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Laboratórios , Inteligência Artificial , Estudos Retrospectivos , Estudos Prospectivos , Exoma/genética
9.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293990

RESUMO

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Assuntos
Canais de Cálcio Tipo N , Epilepsia , Idade de Início , Animais , Cálcio , Canais de Cálcio , Canais de Cálcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neurônios
10.
Hum Mutat ; 43(12): 1816-1823, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317458

RESUMO

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.


Assuntos
Hipotonia Muscular , Doenças Musculares , Proteínas Serina-Treonina Quinases , Humanos , Variações do Número de Cópias de DNA , Exoma , Sequenciamento do Exoma , Éxons/genética , Hipotonia Muscular/genética , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Lactente
11.
Genet Med ; 24(2): 364-373, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906496

RESUMO

PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Micrognatismo , Anormalidades Múltiplas/genética , Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Deformidades Congênitas da Mão/genética , Humanos , Micrognatismo/genética , Estudos Retrospectivos
12.
Am J Med Genet A ; 188(6): 1868-1874, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194938

RESUMO

Prune exopolyphosphatase-1 (PRUNE1) encodes a member of the aspartic acid-histidine-histidine (DHH) phosphodiesterase superfamily that regulates cell migration and proliferation during brain development. In 2015, biallelic PRUNE1 loss-of-function variants were identified to cause the neurodevelopmental disorder with microcephaly, hypotonia, and variable brain abnormalities (NMIHBA, OMIM#617481). NMIHBA is characterized by the namesake features and structural brain anomalies including thinning of the corpus callosum, cerebral and cerebellar atrophy, and delayed myelination. To date, 47 individuals have been reported in the literature, but the phenotypic spectrum of PRUNE1-related disorders and their causative variants remains to be characterized fully. Here, we report a novel homozygous PRUNE1 NM_021222.2:c.933G>A synonymous variant identified in a 6-year-old boy with intellectual and developmental disabilities, hypotonia, and spastic diplegia, but with the absence of microcephaly, brain anomalies, or seizures. Fibroblast RNA sequencing revealed that the PRUNE1 NM_021222.1:c.933G>A variant resulted in an in-frame skipping of the penultimate exon 7, removing 53 amino acids from an important protein domain. This case represents the first synonymous variant and the third pathogenic variant known to date affecting the DHH-associated domain (DHHA2 domain). These findings extend the genotypic and phenotypic spectrums in PRUNE1-related disorders and highlight the importance of considering synonymous splice site variants in atypical presentations.


Assuntos
Microcefalia , Criança , Éxons/genética , Histidina/genética , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonia Muscular/genética , Linhagem , Monoéster Fosfórico Hidrolases/genética
13.
Am J Med Genet A ; 188(7): 2198-2203, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396900

RESUMO

White-Sutton syndrome (WHSUS), which is caused by heterozygous pathogenic variants in POGZ, is characterized by a spectrum of intellectual disabilities and global developmental delay with or without features of autism spectrum disorder. Additional features may include hypotonia, behavioral abnormalities, ophthalmic abnormalities, hearing loss, sleep apnea, microcephaly, dysmorphic facial features, and rarely, congenital diaphragmatic hernia (CDH). We present a 6-year-old female with features of WHSUS, including CDH, but with nondiagnostic clinical trio exome sequencing. Exome sequencing reanalysis revealed a heterozygous, de novo, intronic variant in POGZ (NM_015100.3:c.2546-20T>A). RNA sequencing revealed that this intronic variant leads to skipping of exon 18. This exon skipping event results in a frameshift with a predicted premature stop codon in the last exon and escape from nonsense-mediated mRNA decay (NMD). To our knowledge, this case is the first case of WHSUS caused by a de novo, intronic variant that is not near a canonical splice site within POGZ. These findings emphasize the limitations of standard clinical exome filtering algorithms and the importance of research reanalysis of exome data together with RNA sequencing to confirm a suspected diagnosis of WHSUS. As the sixth reported case of CDH with heterozygous pathogenic variants in POGZ and features consistent with WHSUS, this report supports the conclusion that WHSUS should be considered in the differential diagnosis for patients with syndromic CDH.


Assuntos
Transtorno do Espectro Autista , Hérnias Diafragmáticas Congênitas , Deficiência Intelectual , Microcefalia , Transtorno do Espectro Autista/genética , Criança , Exoma/genética , Feminino , Hérnias Diafragmáticas Congênitas/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Mutação , Transposases/genética , Sequenciamento do Exoma
14.
Clin Genet ; 100(2): 227-233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963760

RESUMO

PPP3CA encodes the catalytic subunit of calcineurin, a calcium-calmodulin-regulated serine-threonine phosphatase. Loss-of-function (LoF) variants in the catalytic domain have been associated with epilepsy, while gain-of-function (GoF) variants in the auto-inhibitory domain cause multiple congenital abnormalities. We herein report five new patients with de novo PPP3CA variants. Interestingly, the two frameshift variants in this study and the six truncating variants reported previously are all located within a 26-amino acid region in the regulatory domain (RD). Patients with a truncating variant had more severe earlier onset seizures compared to patients with a LoF missense variant, while autism spectrum disorder was a more frequent feature in the latter. Expression studies of a truncating variant showed apparent RNA expression from the mutant allele, but no detectable mutant protein. Our data suggest that PPP3CA truncating variants clustered in the RD, causing more severe early-onset refractory epilepsy and representing a type of variants distinct from LoF or GoF missense variants.


Assuntos
Calcineurina/genética , Epilepsia/genética , Mutação , Adolescente , Calcineurina/metabolismo , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia/etiologia , Feminino , Expressão Gênica , Humanos , Masculino , Análise de Sequência de RNA
15.
Am J Med Genet A ; 185(8): 2315-2324, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33949769

RESUMO

Gillespie syndrome (GLSP) is characterized by bilateral symmetric partial aplasia of the iris presenting as a fixed and large pupil, cerebellar hypoplasia with ataxia, congenital hypotonia, and varying levels of intellectual disability. GLSP is caused by either biallelic or heterozygous, dominant-negative, pathogenic variants in ITPR1. Here, we present a 5-year-old male with GLSP who was found to have a heterozygous, de novo intronic variant in ITPR1 (NM_001168272.1:c.5935-17G > A) through genome sequencing (GS). Sanger sequencing of cDNA from this individual's fibroblasts showed the retention of 15 nucleotides from intron 45, which is predicted to cause an in-frame insertion of five amino acids near the C-terminal transmembrane domain of ITPR1. In addition, qPCR and cDNA sequencing demonstrated reduced expression of both ITPR1 alleles in fibroblasts when compared to parental samples. Given the close proximity of the predicted in-frame amino acid insertion to the site of previously described heterozygous, de novo, dominant-negative, pathogenic variants in GLSP, we predict that this variant also has a dominant-negative effect on ITPR1 channel function. Overall, this is the first report of a de novo intronic variant causing GLSP, which emphasizes the utility of GS and cDNA studies for diagnosing patients with a clinical presentation of GLSP and negative clinical exome sequencing.


Assuntos
Aniridia/diagnóstico , Aniridia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Receptores de Inositol 1,4,5-Trifosfato/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Íntrons , Mutação , Alelos , Pré-Escolar , Análise Mutacional de DNA , Fácies , Estudos de Associação Genética/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Avaliação de Sintomas , Sequenciamento Completo do Genoma
16.
Genet Med ; 22(10): 1633-1641, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32576985

RESUMO

PURPOSE: Improved resolution of molecular diagnostic technologies enabled detection of smaller sized exonic level copy-number variants (CNVs). The contribution of CNVs to autosomal recessive (AR) conditions may be better recognized using a large clinical cohort. METHODS: We retrospectively investigated the CNVs' contribution to AR conditions in cases subjected to chromosomal microarray analysis (CMA, N = ~70,000) and/or clinical exome sequencing (ES, N = ~12,000) at Baylor Genetics; most had pediatric onset neurodevelopmental disorders. RESULTS: CNVs contributed to biallelic variations in 87 cases, including 81 singletons and three affected sibling pairs. Seventy cases had CNVs affecting both alleles, and 17 had a CNV and a single-nucleotide variant (SNV)/indel in trans. In total, 94.3% of AR-CNVs affected one gene; among these 41.4% were single-exon and 35.0% were multiexon partial-gene events. Sixty-nine percent of homozygous AR-CNVs were embedded in homozygous genomic intervals. Five cases had large deletions unmasking an SNV/indel on the intact allele for a recessive condition, resulting in multiple molecular diagnoses. CONCLUSIONS: AR-CNVs are often smaller in size, transmitted through generations, and underrecognized due to limitations in clinical CNV detection methods. Our findings from a large clinical cohort emphasized integrated CNV and SNV/indel analyses for precise clinical and molecular diagnosis especially in the context of genomic disorders.


Assuntos
Variações do Número de Cópias de DNA , Mutação INDEL , Criança , Variações do Número de Cópias de DNA/genética , Éxons , Humanos , Estudos Retrospectivos , Sequenciamento do Exoma
17.
Am J Med Genet A ; 182(11): 2751-2754, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32885560

RESUMO

Sudden Infant Death with Dysgenesis of the Testes syndrome (SIDDT) is a very rare condition associated with biallelic pathogenic variants in the TSPYL1 gene first reported in 2004. It is characterized by sudden cardiac or respiratory arrest, disordered testicular development, neurologic dysfunction, and is uniformly fatal before the age of 12 months. There were previously 21 reported cases of SIDDT in the literature, all from nine Old Order Amish families published in a single paper. In this report, we describe a non-Amish, phenotypically female infant with poor feeding and abnormal motor movements noted at birth. Initial testing showed that she had a 46,XY chromosome complement, and chromosomal microarray showed a significant absence of heterozygosity (AOH) totalling roughly 600 Mb across multiple different chromosomes, indicating consanguinity. Further workup with exome sequencing revealed homozygosity for a frameshift variant in TSPYL1 (c.725_726delTG, p.Val242GlufsTer52) consistent with a diagnosis of SIDDT, explaining many of her clinical features. However, she was also noted to have a mild T-cell lymphopenia and developed intractable epilepsy after hospital discharge. These features have not previously been reported in SIDDT and may represent phenotypic expansion. To our knowledge, this patient is the 22nd case of SIDDT to be reported in the literature, and the first to be of non-Amish heritage.


Assuntos
Mutação , Proteínas Nucleares/genética , Fenótipo , Morte Súbita do Lactente/patologia , Testículo/anormalidades , Amish , Feminino , Humanos , Recém-Nascido , Morte Súbita do Lactente/genética , Testículo/patologia , Sequenciamento do Exoma
18.
Hum Mutat ; 39(4): 461-470, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29282788

RESUMO

Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.


Assuntos
DNA Mitocondrial/genética , Transtornos Heredodegenerativos do Sistema Nervoso , Hepatopatias , Proteínas de Membrana/genética , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Doenças do Sistema Nervoso Periférico , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/diagnóstico , Hepatopatias/genética , Hepatopatias/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo
19.
Mol Genet Metab ; 125(3): 281-291, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30177229

RESUMO

An increasing number of mitochondrial diseases are found to be caused by pathogenic variants in nuclear encoded mitochondrial aminoacyl-tRNA synthetases. FARS2 encodes mitochondrial phenylalanyl-tRNA synthetase (mtPheRS) which transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, a total of 21 subjects with FARS2 deficiency have been reported to date with a spectrum of disease severity that falls between two phenotypes; early onset epileptic encephalopathy and a less severe phenotype characterized by spastic paraplegia. In this report, we present an additional 15 individuals from 12 families who are mostly Arabs homozygous for the pathogenic variant Y144C, which is associated with the more severe early onset phenotype. The total number of unique pathogenic FARS2 variants known to date is 21 including three different partial gene deletions reported in four individuals. Except for the large deletions, all variants but two (one in-frame deletion of one amino acid and one splice-site variant) are missense. All large deletions and the single splice-site variant are in trans with a missense variant. This suggests that complete loss of function may be incompatible with life. In this report, we also review structural, functional, and evolutionary significance of select FARS2 pathogenic variants reported here.


Assuntos
Aminoacil-tRNA Sintetases/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Adulto , Aminoacil-tRNA Sintetases/deficiência , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Mutação/genética , Paraplegia/genética , Paraplegia/patologia , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/deficiência , Isoformas de Proteínas/genética , Relação Estrutura-Atividade , Adulto Jovem
20.
Hum Mutat ; 38(12): 1649-1659, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940506

RESUMO

F-box and leucine-rich repeat protein 4 (FBXL4) is a mitochondrial protein whose exact function is not yet known. However, cellular studies have suggested that it plays significant roles in mitochondrial bioenergetics, mitochondrial DNA (mtDNA) maintenance, and mitochondrial dynamics. Biallelic pathogenic variants in FBXL4 are associated with an encephalopathic mtDNA maintenance defect syndrome that is a multisystem disease characterized by lactic acidemia, developmental delay, and hypotonia. Other features are feeding difficulties, growth failure, microcephaly, hyperammonemia, seizures, hypertrophic cardiomyopathy, elevated liver transaminases, recurrent infections, variable distinctive facial features, white matter abnormalities and cerebral atrophy found in neuroimaging, combined deficiencies of multiple electron transport complexes, and mtDNA depletion. Since its initial description in 2013, 36 different pathogenic variants in FBXL4 were reported in 50 affected individuals. In this report, we present 37 additional affected individuals and 11 previously unreported pathogenic variants. We summarize the clinical features of all 87 individuals with FBXL4-related mtDNA maintenance defect, review FBXL4 structure and function, map the 47 pathogenic variants onto the gene structure to assess the variants distribution, and investigate the genotype-phenotype correlation. Finally, we provide future directions to understand the disease mechanism and identify treatment strategies.


Assuntos
DNA Mitocondrial/genética , Proteínas F-Box/genética , Estudos de Associação Genética , Encefalomiopatias Mitocondriais/genética , Ubiquitina-Proteína Ligases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Mitocôndrias/genética , Encefalomiopatias Mitocondriais/epidemiologia , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/genética , Hipotonia Muscular/genética , Mutação , Fosforilação Oxidativa , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA