Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(12): 126403, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016751

RESUMO

For conventional topological phases, the boundary gapless modes are determined by bulk topological invariants. Based on developing an analytic method to solve higher-order boundary modes, we present PT-invariant 2D topological insulators and 3D topological semimetals that go beyond this bulk-boundary correspondence framework. With unchanged bulk topological invariants, their first-order boundaries undergo transitions separating different phases with second-order boundary zero modes. For the 2D topological insulator, the helical edge modes appear at the transition point for two second-order topological insulator phases with diagonal and off-diagonal corner zero modes, respectively. Accordingly, for the 3D topological semimetal, the criticality corresponds to surface helical Fermi arcs of a Dirac semimetal phase. Interestingly, we find that the 3D system generically belongs to a novel second-order nodal-line semimetal phase, possessing gapped surfaces but a pair of diagonal or off-diagonal hinge Fermi arcs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA