RESUMO
Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had â¼40-fold lower yields but â¼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.
Assuntos
Vetores Genéticos , Rim , Animais , Camundongos , Humanos , Células HEK293 , Vetores Genéticos/genética , Transfecção , Células Sf9 , Dependovirus/genéticaRESUMO
As one of the most common imaging screening techniques for spinal injuries, MRI is of great significance for the pretreatment examination of patients with spinal injuries. With rapid iterative update of imaging technology, imaging techniques such as diffusion weighted magnetic resonance imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and magnetic resonance spectroscopy are frequently used in the clinical diagnosis of spinal injuries. Multimodal medical image fusion technology can obtain richer lesion information by combining medical images in multiple modalities. Aiming at the two modalities of DCE-MRI and DWI images under MRI images of spinal injuries, by fusing the image data under the two modalities, more abundant lesion information can be obtained to diagnose spinal injuries. The research content includes the following: (1) A registration study based on DCE-MRI and DWI image data. To improve registration accuracy, a registration method is used, and VGG-16 network structure is selected as the basic registration network structure. An iterative VGG-16 network framework is proposed to realize the registration of DWI and DCE-MRI images. The experimental results show that the iterative VGG-16 network structure is more suitable for the registration of DWI and DCE-MRI image data. (2) Based on the fusion research of DCE-MRI and DWI image data. For the registered DCE-MRI and DWI images, this paper uses a fusion method combining feature level and decision level to classify spine images. The simple classifier decision tree, SVM, and KNN were used to predict the damage diagnosis classification of DCE-MRI and DWI images, respectively. By comparing and analyzing the classification results of the experiments, the performance of multimodal image fusion in the auxiliary diagnosis of spinal injuries was evaluated.
Assuntos
Meios de Contraste , Traumatismos da Coluna Vertebral , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , TecnologiaRESUMO
In the use of non-antibody proteins as affinity reagents, diversity has generally been derived from oligonucleotide-encoded random amino acids. Although specific binders of high-affinity have been selected from such libraries, random oligonucleotides often encode stop codons and amino acid combinations that affect protein folding. Recently it has been shown that specific antibody binding loops grafted into heterologous proteins can confer the specific antibody binding activity to the created chimeric protein. In this paper, we examine the use of such antibody binding loops as diversity elements. We first show that we are able to graft a lysozyme-binding antibody loop into green fluorescent protein (GFP), creating a fluorescent protein with lysozyme-binding activity. Subsequently we have developed a PCR method to harvest random binding loops from antibodies and insert them at predefined sites in any protein, using GFP as an example. The majority of such GFP chimeras remain fluorescent, indicating that binding loops do not disrupt folding. This method can be adapted to the creation of other nucleic acid libraries where diversity is flanked by regions of relative sequence conservation, and its availability sets the stage for the use of antibody loop libraries as diversity elements for selection experiments.
Assuntos
Regiões Determinantes de Complementaridade/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes de Fusão/imunologia , Diversidade de Anticorpos , Sequência de Bases , Clonagem Molecular/métodos , Ensaio de Imunoadsorção Enzimática , Biblioteca Gênica , Proteínas de Fluorescência Verde/análise , Humanos , Dados de Sequência Molecular , Muramidase/imunologia , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNARESUMO
Site-directed mutagenesis and chemical modification were performed at Ser290 of the penicillin G acylase from E. coli ATCC11105. The Ser290 was substituted by Cys or Secys. Wild type and mutant proteins were purified, and the activities and kinetic constants of penicillin acylases for hydrolysis and synthesis were determined, respectively. Although their K(m) values were not changed, the k(cat) values of the thiol-PGA and seleno-PGA were decreased from 135s(-1) to 0.63s(-1) and 0.38s(-1) against NIPAB, and from 34.38s(-1) to 0.23s(-1) and 0.06s(-1) against penicillin G. Contrary to Choi's report(Choi K S (et al. J Bacteriology), 1992, 10 6270-6276), we found that hydrolysis activity was certainly kept in the mutant of penicillin acylase. In addition, the specific activities of synthesis were decreased by 5-fold and 20-fold, respectively.
RESUMO
Protoplast fusion has been used to combine genes from different organisms to create strains with desired properties. A recently developed variant on this approach, genome shuffling, involves generation of a genetically heterogeneous population of a single organism, followed by recursive protoplast fusion to allow recombination of mutations within the fused protoplasts. These are powerful techniques for engineering of microbial strains for desirable industrial properties. However, there is a prevailing opinion that it will be difficult to use these methods for engineering of Gram-negative bacteria because the outer membrane makes protoplast fusion more difficult. Here we describe the successful use of protoplast fusion in Escherichia coli. Using two auxotrophic strains of E. coli, we obtained prototrophic strains by recombination in fused protoplasts at frequencies of 0.05-0.7% based on the number of protoplasts subjected to fusion. This frequency is three-four orders of magnitude better than those previously reported for recombination in fused protoplasts of Gram-negative bacteria such as E. coli and Providencia alcalifaciens.
Assuntos
Clonagem Molecular/métodos , Escherichia coli/classificação , Escherichia coli/genética , Protoplastos/ultraestrutura , Fusão Gênica Artificial/métodos , Embaralhamento de DNA/métodos , Escherichia coli/ultraestrutura , Recombinação Genética , Especificidade da EspécieRESUMO
Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.
Assuntos
Embaralhamento de DNA , Genoma Bacteriano , Pentaclorofenol/metabolismo , Praguicidas/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Sequência de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Poluentes Ambientais/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas , Sphingomonadaceae/crescimento & desenvolvimentoRESUMO
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone.