Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582580

RESUMO

Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Assuntos
Microbioma Gastrointestinal , Guanidinas , Nitrocompostos , Nosema , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
2.
Pestic Biochem Physiol ; 204: 106107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277411

RESUMO

The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.


Assuntos
Nitrilas , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/fisiologia , Varroidae/efeitos dos fármacos , Nitrilas/toxicidade , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Fungicidas Industriais/toxicidade
3.
PLoS Pathog ; 17(7): e1009684, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237116

RESUMO

Tropilaelaps mercedesae is one of the most problematic honey bee parasites and has become more threatening to the beekeeping industry. Tropilaelaps can easily parasitize immature honey bees (larvae and pupae) and have both lethal and sublethal effects on the individual worker bees. Our study for the first time experimentally assessed the effects of T. mercedesae on olfactory learning, flight ability, homing ability as well as transcriptional changes in parasitized adult honey bees. T. mercedesae infestation had negative impacts on olfactory associated function, flight ability, and homing rate. The volume of the mushroom body significantly increased in infested honey bees, which may be correlated to the lower sucrose responsiveness as well as lower learning ability in the infested bees. The gene expression involved in immune systems and carbohydrate transport and metabolism were significantly different between infested bees and non-infested bees. Moreover, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our findings provide a comprehensive understanding of European honey bees in response to T. mercedesae infestation, and could be used to further investigate the complex molecular mechanisms in honey bees under parasitic stress.


Assuntos
Abelhas/parasitologia , Comportamento Animal , Expressão Gênica , Varroidae , Animais
4.
Environ Res ; 219: 115097, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566965

RESUMO

As one of the key stable crops to feed half of the world's population, how rice cropping system affects honey bee health regarding pesticide exposure and forage availability is under investigated. We predicted honey bees were stressed by high pesticide exposure and forage dearth in monoculture rice systems. Providing access to natural habitats is a typical approach to mitigate the negative impact of intensive agriculture on honey bees. We aimed to determine if bee colonies located in landscapes with more cover of forest habitat would collect more forage and be exposed to less pesticides. We selected beekeeping locations in rice dominated landscapes (as control), mosaic landscapes of rice and medium woodland (MW) cover, and landscapes of high woodland (HW) cover, respectively, in July when rice starts bloom and pesticides are commonly used. Colonies were inspected at a biweekly frequency from July to October with population growth and forage (nectar and pollen) availability estimated. Pollen and bees were collected in middle August for pesticide exposure analysis. We did not observe enhancement in forage availability and reduction in pesticide exposure in landscapes with increased forest habitat (i.e., MW or HW cover), and all colonies failed in the end. Other natural habitats that can supplement flower shortage periods in forest can be considered for supporting bee health. Our results suggest that forest should be carefully assessed for being incorporated into beekeeping management or pollinator conservation when forest phenology can be a factor to affect its impact as a natural habitat.


Assuntos
Oryza , Praguicidas , Abelhas , Animais , Agricultura , Criação de Abelhas , Néctar de Plantas
5.
Pestic Biochem Physiol ; 194: 105483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532314

RESUMO

Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.


Assuntos
Abelhas , Inseticidas , Neonicotinoides , Tiazinas , Animais , Abelhas/genética , Abelhas/metabolismo , Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Testes de Toxicidade Subaguda , Testes de Toxicidade Crônica , China , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Estresse Fisiológico/genética
6.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35947094

RESUMO

Black queen cell virus (BQCV) is a severe threat to the honeybee (Apis mellifera) worldwide. Although several BQCV strains have been reported in China, the molecular basis for BQCV pathogenicity has not been well understood. Thus, a reverse genetic system of BQCV is required for studying viral replication and its pathogenic mechanism. Here, the complete genome sequence of BQCV was obtained from honeybees using reverse transcription PCR (RT-PCR), namely a BQCV China-GS1 strain (KY741959). Then, a phylogenetic tree was built to analyse the genetic relationships among BQCV strains from different regions. Our results showed that the BQCV China-GS1 contained two ORFs, consistent with the known reference strains, except for the BQCV China-JL1 strain (KP119603). Furthermore, the infectious clone of BQCV was constructed based on BQCV China-GS1 using a low copy vector pACYC177 and gene recombination. Due to the lack of culture cells for bee viruses, we infected the healthy bees with infectious clone of BQCV, and the rescued BQCV resulted in the recovery of recombinant virus, which induced higher mortality than those of the control group. Immune response after inoculated with BQCV further confirmed that the infectious clone of BQCV caused the cellular and humoral immune response of honeybee (A. mellifera). In conclusion, the full nucleotide sequence of BQCV China-GS1 strain was determined, and the infectious clone of BQCV was constructed in this study. These data will improve the understanding of pathogenesis and the host immune responses to viral infection.


Assuntos
Dicistroviridae , Vírus de RNA , Vírus , Animais , Abelhas , Dicistroviridae/genética , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , Vírus/genética
7.
Exp Appl Acarol ; 80(4): 463-476, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32249394

RESUMO

The parasitic mite Varroa destructor Anderson and Trueman continues to devastate western honey bee (Apis mellifera L.) colonies throughout most of the world where they are managed. The development of a method to rear Varroa in vitro would allow for year-round Varroa research, rapidly advancing our progress towards controlling the mite. We created two separate experiments to address this objective. First, we determined which of four in vitro rearing methods yields the greatest number of Varroa offspring. Second, we attempted to improve the rearing rates achieved with that method. The four methods tested included (1) rearing Varroa on honey bee pupae in gelatin capsules, (2) rearing Varroa on in vitro-reared honey bees, (3) group rearing Varroa on honey bee pupae in Petri dishes, and (4) providing Varroa a bee-derived diet. The number of reproducing females and the number of fully mature offspring were significantly higher in the gelatin capsules maintained at 75% RH than in any other method. A 2 × 3 full factorial design was used to test combinations of gelatin capsule size (6 and 7 mm diameter) and relative humidity (65, 75, or 85%) on Varroa rearing success. Varroa reproduction and survival were significantly higher in 7-mm-diameter gelatin capsules maintained at 75% RH than in those maintained in 6-mm capsules and at the other humidities. By identifying factors that influence Varroa reproductive success in vitro, this work provides an important foundation for the development of future rearing protocols.


Assuntos
Abelhas/parasitologia , Varroidae/crescimento & desenvolvimento , Animais , Feminino , Pupa/parasitologia , Reprodução
8.
Ecotoxicol Environ Saf ; 181: 381-387, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212186

RESUMO

The effects of Bt Cry9Ee toxin on honey bee, Apis mellifera L., survival, developmental rate, larval weight, pollen consumption, and midgut bacterial diversity were tested in the laboratory. Honey bee larvae and adults were reared in vitro and fed a diet that contained Cry9Ee toxin at 0.01, 0.1, 1, and 10 mg/L. Cry9Ee toxin 0.01, 0.1, and 1 mg/L in diet used in this study may represent a value closer to field relevance and the highest concentration is unlikely to be encountered in the field and thus represent a worst case scenario. The dependent variables were compared for groups of honey bees feeding on treated diet and those feeding on negative control (no addition of a test substance), solvent control (0.01 mM Na2CO3), and positive control diet (dimethoate 45 mg/L). Bt Cry9Ee toxin did not affect survival or larval weight, and the result was great confidence in accepting the null hypothesis by power analysis. The effect on development rates and pollen consumption were the inconclusive results because the post-hoc power was less than 0.8. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial class such as γ-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacilli, ß-Proteobacteria, and Bacteroidia were detected, and no significant changes were found in the species diversity and richness between Cry9Ee treatments and laboratory control.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Abelhas/crescimento & desenvolvimento , Sistema Digestório/microbiologia , Larva/efeitos dos fármacos , Pólen
9.
Exp Appl Acarol ; 79(2): 169-186, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31602536

RESUMO

Tropilaelaps mercedesae is an ectoparasite of Apis mellifera in Asia and is considered a major threat to honey bee health. Herein, we used the Illumina MiSeq platform 16S rDNA Amplicon Sequencing targeting the V3-V4 regions and analysed the effects on the midgut bacterial communities of honey bees infested with T. mercedesae. The overall bacterial community in honey bees infested with T. mercedesae were observed at different developmental stages. Honey bee core intestinal bacterial genera such as Gilliamella, Lactobacillus and Frischella were detected. Tropilaelapsmercedesae infestation changed the bacterial communities in the midgut of A. mellifera. Tropilaelapsmercedesae-infested pupae had greatly increased relative abundances of Micrococcus and Sphingomonas, whereas T. mercedesae-infested 15-day-old workers had significantly reduced relative abundance of non-core microbes: Corynebacterium, Sphingomonas, Acinetobacter and Enhydrobacter compared to T. mercedesae-infested newly emerged bees. The bacterial community was significantly changed at the various T. mercedesae-infested developmental stages of A. mellifera. Tropilaelapsmercedesae infestation also changed the non-core bacterial community from larvae to newly emerged honey bees. Bacterial communities were significantly different between T. mercedesa-infested and non-mite-infested 15-day-old workers. Lactobacillus was dominant in T. mercedesae-infested 15-day-old workers compared to non-mite-infested 15-day-old workers.


Assuntos
Bactérias/isolamento & purificação , Abelhas/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , China , Ácaros/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
10.
Ecotoxicol Environ Saf ; 164: 283-288, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30125774

RESUMO

Chlorothalonil is a broad-spectrum fungicide and diflubenzuron is an insect growth regulator used to control many insect larvae feeding on agricultural, forest and ornamental plants. Honey bee larvae may be exposed to both via contaminated pollen, in the form of beebread, added to their diet by their adult nurse sisters. In this study, we determined how single (acute: 72 h mortality) and repeated (chronic: mortality until emergence as adults) exposure to chlorothalonil and diflubenzuron in their diet affected honey bee larvae reared in vitro. The tested doses of chlorothalonil (20, 100, or 200 mg/L) did not impact 72 h larval mortality acutely relative to that of the solvent control. The 72 h mortality of larvae exposed to 1.6 mg/L and higher doses of diflubenzuron acutely in their diet (47.2-63.9% mortality) was significantly higher than that of larvae fed the solvent control, with no predictable dose dependent pattern observed. In the chronic toxicity tests, consuming an artificial diet with 30 or 100 mg/L chlorothalonil and 0.8, 1.3 or 2 mg/L diflubenzuron significantly lowered the survival of honey bee larvae over that of larvae feeding on the solvent control diet. We calculated risk quotients (RQs) for both compounds using the data we generated in our experiments. Collectively, the RQs suggest that neither compound is likely to affect larval mortality directly at field relevant doses given that pollen composes only a fraction of the total larval diet. Nevertheless, our data do not preclude any sublethal effects that chronic exposure to either compound may cause.


Assuntos
Diflubenzuron/análise , Fungicidas Industriais/farmacologia , Larva/efeitos dos fármacos , Nitrilas/análise , Praguicidas/análise , Pólen/efeitos dos fármacos , Animais , Abelhas , Peso Corporal , Dieta/veterinária , Projetos Piloto , Risco , Solventes , Testes de Toxicidade Crônica
11.
Pestic Biochem Physiol ; 135: 1-8, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28043325

RESUMO

As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10-2mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.


Assuntos
Abelhas , Canais de Cálcio Tipo T/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/toxicidade , Neurônios/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Abelhas/citologia , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Neurônios/metabolismo
12.
J Econ Entomol ; 108(4): 1486-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470287

RESUMO

Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators.


Assuntos
Apoptose/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Animais , Autofagia , Abelhas/fisiologia , Abelhas/ultraestrutura , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Caspase 1/genética , Caspase 1/metabolismo , Relação Dose-Resposta a Droga , Marcação In Situ das Extremidades Cortadas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Eletrônica de Transmissão , Neonicotinoides , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Genes (Basel) ; 15(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39202363

RESUMO

Thiacloprid, a neonicotinoid pesticide, is known to affect the gut microbiome of honeybees, yet studies often focus on immediate alternations during exposure, overlooking long-term microbiological impacts post-exposure. This study investigates the influences of sublethal thiacloprid administered during the larval developmental stage of honeybees on physiological changes and gut microbiota of adult honeybees. We found that thiacloprid exposure increased mortality and sugar intake in emerged honeybees. Using 16S rDNA sequencing, we analyzed intestinal microbial diversity of honeybees at one and six days post-emergence. Our findings reveal a significant but transient disruption in gut microbiota on day 1, with recovery from dysbiosis by day 6. This study emphasizes the importance of evaluating chronic sublethal exposure risks of thiacloprid to protect honeybee health.


Assuntos
Microbioma Gastrointestinal , Neonicotinoides , Tiazinas , Animais , Abelhas/microbiologia , Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Tiazinas/toxicidade , Tiazinas/farmacologia , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/microbiologia , RNA Ribossômico 16S/genética
14.
J Hazard Mater ; 471: 134380, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657514

RESUMO

Health of honey bees is threatened by a variety of stressors, including pesticides and parasites. Here, we investigated effects of acetamiprid, Varroa destructor, and Nosema ceranae, which act either alone or in combination. Our results suggested that interaction between the three factors was additive, with survival risk increasing as the number of stressors increased. Although exposure to 150 µg/L acetamiprid alone did not negatively impact honey bee survival, it caused severe damage to midgut tissue. Among the three stressors, V. destructor posed the greatest threat to honey bee survival, and N. ceranae exacerbated intestinal damage and increased thickness of the midgut wall. Transcriptomic analysis indicated that different combinations of stressors elicited specific gene expression responses in honey bees, and genes involved in energy metabolism, immunity, and detoxification were altered in response to multiple stressor combinations. Additionally, genes associated with Toll and Imd signalling, tyrosine metabolism, and phototransduction pathway were significantly suppressed in response to different combinations of multiple stressors. This study enhances our understanding of the adaptation mechanisms to multiple stressors and aids in development of suitable protective measures for honey bees. ENVIRONMENTAL IMPLICATION: We believe our study is environmentally relevant for the following reasons: This study investigates combined effects of pesticide, Varroa destructor, and Nosema ceranae. These stressors are known to pose a threat to long-term survival of honey bees (Apis mellifera) and stability of the ecosystems. The research provides valuable insights into the adaptive mechanisms of honey bees in response to multiple stressors and developing effective conservation strategies. Further research can identify traits that promote honey bee survival in the face of future challenges from multiple stressors to maintain the overall stability of environment.


Assuntos
Neonicotinoides , Nosema , Varroidae , Animais , Abelhas/efeitos dos fármacos , Nosema/efeitos dos fármacos , Neonicotinoides/toxicidade , Varroidae/efeitos dos fármacos , Inseticidas/toxicidade
15.
Sci Total Environ ; 935: 173418, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788938

RESUMO

Flupyradifurone (FPF) has been reported to have a potential risk to terrestrial and aquatic ecosystems. In the present study, the effects of chronic FPF exposure on bees were systematically investigated at the individual behavioral, tissue, cell, enzyme activity, and the gene expression levels. Chronic exposure (14 d) to FPF led to reduced survival (12 mg/L), body weight gain (4 and 12 mg/L), and food utilization efficiency (4 and 12 mg/L). Additionally, FPF exposure (12 mg/L) impaired sucrose sensitivity and memory of bees. Morphological analysis revealed significant cellular and subcellular changes in brain neurons and midgut epithelial cells, including mitochondrial damage, nuclear disintegration, and apoptosis. FPF exposure (4 and 12 mg/L) led to oxidative stress, as evidenced by increased lipid peroxidation and alterations in antioxidant enzyme activity. Notably, gene expression analysis indicated significant dysregulation of apoptosis, immune, detoxification, sucrose responsiveness and memory-related genes, suggesting the involvement of different pathways in FPF-induced toxicity. The multiple stresses and potential mechanisms described here provide a basis for determining the intrinsic toxicity of FPF.


Assuntos
Estresse Oxidativo , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico , 4-Butirolactona/toxicidade , 4-Butirolactona/análogos & derivados
16.
Front Physiol ; 14: 1114488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153228

RESUMO

The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.

17.
J Hazard Mater ; 442: 130109, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303336

RESUMO

Honeybees (Apis mellifera) are indispensable pollinators in agricultural production, biodiversity conservation, and nutrients provision. The abundance and diversity of honeybees have been rapidly diminishing, possibly related to the extensive use of insecticides in ecosystems. Sulfoxaflor is a novel sulfoximine insecticide that, like neonicotinoids, acts as a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. However, few studies have addressed the negative effects of sulfoxaflor on honeybees at environmentally relevant concentrations. In the present study, adult workers were fed a 50% (w/v) of sugar solution containing different concentrations (0, 0.05, 0.5 and 2.0 mg/L) of sulfoxaflor for two weeks consecutively. The survival rates, food intake, and body weight of the honeybees significantly decreased after continuous exposure at higher doses (0.5 and 2.0 mg/L) of sulfoxaflor when compared with the control. The change in the metabolites in the honeybee gut was determined using high-throughput non-targeted metabolomics on day 14 after sulfoxaflor treatment. The results revealed that 24 and 105 metabolites changed after exposure to 0.5 and 2.0 mg/L sulfoxaflor, respectively, compared with that of the control groups. A total of 12 changed compounds including pregenolone and glutathione were detected as potential biomarkers, which were eventually found to be enriched in pathways of the steroid hormone biosynthesis (p = 0.0001) and glutathione metabolism (p = 0.021). These findings provide a new perspective on the physiological influence of sulfoxaflor stress in honeybees.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Ecossistema , Compostos de Enxofre/toxicidade , Neonicotinoides , Glutationa
18.
Sci Total Environ ; 885: 163820, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142029

RESUMO

Neonicotinoids are among the most widely used insecticides in the world and are recognized as a potential cause of pollinator decline. Previous studies have demonstrated that the neonicotinoid thiacloprid has adverse effects on foraging and memory behaviors. However, there is no direct evidence linking thiacloprid-induced neuronal cell damage in the brains of honeybees to learning and memory dysfunction. Adult honeybee (Apis mellifera L.) workers were chronically exposed to sub-lethal concentrations of thiacloprid. We discovered that thiacloprid negatively affected their survival, food consumption, and body weight. In addition, sucrose sensitivity and memory performance were impaired. We evaluated the apoptosis of honeybee brain cells using TUNEL (Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling) and Caspase-3 assays, which revealed that thiacloprid increases the dose-dependent apoptosis of neurons in the mushroom bodies (MB) and antennal lobes (AL). We also determined the abnormal transcripts of multiple genes, including vitellogenin (Vg), immune system genes (apidaecin and catalase), and memory-associated genes (pka, creb, Nmdar1, Dop2, Oa1, Oa-2R, and Oa-3R). These results indicate that exposure to sublethal concentrations of thiacloprid cause abnormal expression of memory-related genes and apoptosis of brain cells in the AL and MB, which may contribute to the memory disorder induced by thiacloprid exposure.


Assuntos
Inseticidas , Aprendizagem , Abelhas , Animais , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Apoptose
19.
Toxics ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38250974

RESUMO

Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.

20.
Sci Total Environ ; 904: 166302, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595923

RESUMO

Under realistic environmental conditions, bees are often exposed to multiple stressors, especially Varroa destructor and pesticides. In this study, the effects of exposure to NOAEC of chlorothalonil during the larval stage, in the presence or absence of V. destructor, was examined in terms of survival, morphological and transcriptional changes. The interaction between chlorothalonil and V. destructor on the survival of honey bee was additive. V. destructor are the dominant factor in the interaction for survival and transcriptome alternation. The downregulation of the genes related to tissue growth and caste differentiation may directly link to the mortality of honey bees. Either chlorothalonil or V. destructor induces the irregular morphology of trophocytes and oenocytes in the fat body. In addition to irregular shapes, oenocytes in V. destructor alone and double-stressor treatment group showed altered nuclei and vacuoles in the cytoplasm. The interaction of V. destructor and chlorothalonil at the larval stage have potential adverse effects on the subsequent adult bees, with up-regulation of genes involved in lipid metabolism and detoxification/defense in fat body tissue. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Assuntos
Praguicidas , Varroidae , Abelhas , Animais , Varroidae/metabolismo , Larva , Nitrilas/toxicidade , Nitrilas/metabolismo , Praguicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA