Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Med Phys ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493501

RESUMO

BACKGROUND: FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE: To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS: The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS: The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS: A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.

3.
Med Phys ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762909

RESUMO

BACKGROUND: Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE: The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS: Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS: Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS: Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.

4.
Med Phys ; 50(7): 4505-4520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060328

RESUMO

BACKGROUND: Traditional methods of radiotherapy positioning have shortcomings such as fragile skin-markers, additional doses, and lack of information integration. Emerging technologies may provide alternatives for the relevant clinical practice. PURPOSE: To propose a noninvasive radiotherapy positioning system integrating augmented reality (AR) and optical surface, and to evaluate its feasibility in clinical workflow. METHODS: AR and structured light-based surface were integrated to implement the coarse-to-precise positioning through two coherent steps, the AR-based coarse guidance and the optical surface-based precise verification. To implement quality assurance, recognition of face and pattern was used for patient authentication, case association, and accessory validation in AR scenes. The holographic images reconstructed from simulation computed tomography (CT) images, guided the initial posture correction by virtual-real alignment. The point clouds of body surface were fused, with the calibration and pose estimation of structured light cameras, and segmented according to the preset regions of interest (ROIs). The global-to-local registration for cross-source point clouds was achieved to calculate couch shifts in six degrees-of-freedom (DoF), which were ultimately transmitted to AR scenes. The evaluation based on phantom and human-body (4 volunteers) included, (i) quality assurance workflow, (ii) errors of both steps and correlation analysis, (iii) receiver operating characteristic (ROC), (iv) distance characteristics of accuracy, and (v) clinical positioning efficiency. RESULTS: The maximum errors in phantom evaluation were 3.4 ± 2.5 mm in Vrt and 1.4 ± 1.0° in Pitch for the coarse guidance step, while 1.6 ± 0.9 mm in Vrt and 0.6 ± 0.4° in Pitch for the precise verification step. The Pearson correlation coefficients between precise verification and cone beam CT (CBCT) results were distributed in the interval [0.81, 0.85]. In ROC analysis, the areas under the curve (AUC) were 0.87 and 0.89 for translation and rotation, respectively. In human body-based evaluation, the errors of thorax and abdomen (T&A) were significantly greater than those of head and neck (H&N) in Vrt (2.6 ± 1.1 vs. 1.7 ± 0.8, p < 0.01), Lng (2.3 ± 1.1 vs. 1.4 ± 0.9, p < 0.01), and Rtn (0.8 ± 0.4 vs. 0.6 ± 0.3, p = 0.01) while relatively similar in Lat (1.8 ± 0.9 vs. 1.7 ± 0.8, p = 0.07). The translation displacement range, after coarse guidance step, required for high accuracy of the optical surface component of the integrated system was 0-42 mm, and the average positioning duration of the integrated system was significantly less than that of conventional workflow (355.7 ± 21.7 vs. 387.7 ± 26.6 s, p < 0.01). CONCLUSIONS: The combination of AR and optical surface has utility and feasibility for patient positioning, in terms of both safety and accuracy.


Assuntos
Realidade Aumentada , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Posicionamento do Paciente/métodos , Radiocirurgia/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada por Raios X , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas
5.
Artigo em Inglês | MEDLINE | ID: mdl-31909818

RESUMO

With the extension of ion species in ion-beam radiotherapy, the sole dependence of relative biological effectiveness (RBE) on linear energy transfer (LET) is insufficient when comparing RBE for ion beams with the same LET value. The aim of the present study was to provide a systematic study of the nanodosimetry for ion beams with the same LET value. Based on the calculated LET profiles of ion beams with range about 130 mm, lineal energy spectra and dose-averaged lineal energy [Formula: see text] on 4 nm site for various clinical ion beams were obtained. Then, the lineal energy spectra and [Formula: see text] values were compared for ion beams with the same LET values. The results showed that the relationships between [Formula: see text] and LET for various ion beams present an dependence on ion species. For ion beams with the same LET value, the ion beams with smaller nucleon number yielded greater [Formula: see text] values. The probability of the small-nucleon-number ion beams to generate large energy deposition events on nanoscale was higher than that of the large-nucleon-number ion beams. The dependence of the relationship between RBE and LET on ion species might be attributed to the fluctuation of energy depositions on nanometer scale.

6.
Med Phys ; 47(2): 772-780, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705768

RESUMO

PURPOSE: Although carbon-ion therapy is becoming increasingly attractive to the treatment of tumors, details about the ionization pattern formed by therapeutic carbon-ion beam in tissue have not been fully investigated. In this work, systematic calculations for the nanodosimetric quantities and relative biological effectiveness (RBE) of a clinically relevant carbon-ion beam were studied for the first time. METHODS: The method combining both track structure and condensed history Monte Carlo (MC) simulations was adopted to calculate the nanodosimetric quantities. Fragments and energy spectra at different positions of the radiation field of a clinically relevant carbon-ion pencil beam were generated by means of MC simulations in water. Nanodosimetric quantities such as mean ionization cluster size ( M 1 ), the first moment of conditional cluster size ( M 1 C 2 ), cumulative probability ( F 2 ), and conditional cumulative probability ( F 3 C 2 ) at these positions were then acquired based on the spectra and the pre-calculated nanodosimetric database created by track structure MC simulations. What's more, a novel approach to calculate RBE based on the said nanodosimetric quantities was introduced. The RBE calculations were then conducted for the carbon-ion beam at different water-equivalent depths. RESULTS: Lateral distributions at various water-equivalent depths of both the nanodosimetric quantities and RBE values were obtained. The values of M 1 , M 1 C 2 , F 2 , and F 3 C 2 were 1.49, 2.67, 0.30, and 0.38 at the plateau at the beam central axis and maximized at 2.79, 5.69, 0.47, and 0.68 at the depths around the Bragg peak, respectively. At a given depth, M 1 and F 2 decreased laterally with increasing the distance to the beam central axis while M 1 C 2 and F 3 C 2 remained nearly unchanged at first and then decreased except for M 1 C 2 at the rising edge of the Bragg peak. The calculated RBE values were 1.07 at the plateau and 3.13 around the Bragg peak. Good agreement between the calculated RBE values and experimental data was obtained. CONCLUSIONS: Different nanodosimetric quantities feature the track structure of therapeutic carbon-ion beam in different manners. Detailed ionization patterns generated by carbon-ion beam could be characterized by nanodosimetric quantities. Moreover the combined method adopted in this work to calculate nanodosimetric quantities is not only valid but also convenient. Nanodosimetric quantities are significantly helpful for the RBE calculations in carbon-ion therapy.


Assuntos
Radioterapia com Íons Pesados , Nanotecnologia/métodos , Radiometria/métodos , Eficiência Biológica Relativa , Software
7.
Med Phys ; 46(8): 3746-3750, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148177

RESUMO

PURPOSE: To investigate the influence of magnetic fields on the microdosimetry of carbon-ion beams and the scaling effect of tissue equivalent proportional counter (TEPC) defined as the change of energy deposition in a TEPC from that in a microscopic scale region of interest due to the presence of a magnetic field in combination with the TEPC larger physical dimensions. METHODS: Geant4-based Monte Carlo simulations were conducted to calculate the microdosimetric quantities for carbon-ion beams with different initial energies (10-290 MeV/u) under magnetic fields of various strengths (0.5-3 T). The calculations were performed for a 1 µm spherical volume made of tissue, and for spherical TEPCs of 1 and 10 mm in diameter. Then, values of dose-averaged lineal energy (yD ) were acquired for the different scenarios to analyze the effect of magnetic fields on the microdosimetry of carbon-ion beams and the scaling effect of TEPC. RESULTS: The yD values and lineal energy spectra in the 1 µm spherical tissue volume for the scenarios without magnetic field and with magnetic fields of different strengths and directions remained nearly the same for the various energy carbon-ion beams. However, compared with those of the 1 µm spherical tissue volume, an increase of of yD values and an obvious shift of the lineal energy spectra for the TEPCs of 1 and 10 mm in diameter under magnetic fields were found. CONCLUSIONS: The application of magnetic fields under 3 T has no significant influence on the microdosimetric results of carbon-ion beams. However, there is definitely a scaling effect when using TEPC for microdosimetric study, which alters the reading of TEPC in the presence of magnetic fields. Novel methods to correct the reading of TEPC or scaling effect-resistant microdosimetric measurement detectors are urgently needed to perform experimental microdosimetric studies under magnetic fields.


Assuntos
Radioterapia com Íons Pesados , Campos Magnéticos , Método de Monte Carlo , Radiometria , Software
8.
Phys Med ; 55: 15-24, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30471815

RESUMO

An accurate kernel model is of vital importance for pencil-beam dose algorithm in charged particle therapy using precise spot-scanning beam delivery, in which an accurate depiction of the low dose envelope is especially crucial. Based on the Monte Carlo method, we investigated the dose contribution of secondary particles to the total dose and proposed a novel beam model to depict the lateral dose distribution of carbon-ion pencil beam in water. We demonstrated that the low dose envelope in single-spot profiles in water could be adequately modelled with the addition of a logistic distribution to a double Gaussian one, which was verified in both single carbon-ion pencil beam and superposed fields of different sizes with multiple pencil beams. Its superiority was mainly manifested at medium depths especially for high-energy beams with small fields compared with single, double and triple Gaussian models, where the secondary particles influenced the total dose considerably. The double Gaussian-logistic model could reduce the deviations from 4.1%, 1.7% to 0.3% in the plateau and peak regions, and from 19.2%, 4.9% to 1.2% in the tail region compared for the field size factor (FSF) calculations of 344 MeV/u carbon-ion pencil beam with the single and double Gaussian models. Compared with the triple Gaussian one, our newly-proposed model was on a par with it, even better than it in the plateau and peak regions. Thus our work will be helpful for improving the dose calculation accuracy for carbon-ion therapy.


Assuntos
Radioterapia com Íons Pesados , Método de Monte Carlo , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA