Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5490, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361880

RESUMO

Particle surface morphology is an important factor influencing sand structure and mechanical properties. In this study, the effect of sand particle sphericity on sand direct shear performance is investigated by using the discrete element method (DEM). Two ways are adapted to simulate different approaching methods from round particles to irregular sand. The macroresponse shows that irregular sand has a higher shear strength at lower normal stress than round particles. The shape of the particle has less influence on shear strength at higher normal stress. The irregular shape of sand leads to an increase in the shear band proportion. However, the shear band proportion is not related to the sphericity. Under all conditions, particles within the shear band have a larger average rotation angle than those outside the shear band. When the particle shape approaches round (regardless of the round particle proportion and particle shape), the average rotation angle of particles within and without shear bands increase, while the coordinate number and contact anisotropy decrease.

2.
Polymers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215698

RESUMO

The utilizing of traditional chemical stabilizers could improve soil engineering properties but also results in brittle behavior and causes environmental problems. This study investigates the feasibility of the combined utilization of an ecofriendly biopolymer and fiber inclusions as an alternative to traditional cement for reinforcing soft soil. A series of unconfined compression tests were conducted to examine the combined effect of the biopolymer and fibers on the stress-strain characteristics, strength improvement, failure pattern, and reinforcement mechanism of soft soil. The results show that the biopolymer associated with fibers has an unconfined compressive strength similar to that of fiber-reinforced soil. However, it then increases with different curing times and conditions, which can be up to 1.5 MPa-2.5 MPa. The combined effect of fibers and the biopolymer is not simply equivalent to the sum of the effects of each individual material. The fiber shows its role instantly after being mixed into soil, whereas the effect of biopolymer gradually appears with sample curing time. The biopolymer plays a dominant role in increasing the peak unconfined compressive strength and brittleness of soil, while the amount of fiber is crucial for reducing soil brittleness and increasing ductility. It is shown that the biopolymer not only contributes to the particle bonding force but also facilitates the reinforcement efficiency of fibers in the soil. The fibers in return assist in reducing the soil brittleness arising from biopolymer cementation and provide residual resistance after post-peak failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA