Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 35(8): 4347-4362, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34152633

RESUMO

The VEGF/SphK1/S1P pathway is closely related to angiogenesis in rheumatoid arthritis (RA), but the precise underlying mechanisms are unclear at present. Here, we explored the involvement of the VEGF/SphK1/S1P cascade in RA models and determined the effects of GE intervention. Our results showed abnormal expression of proteins related to this pathway in RA synovial tissue. Treatment with GE effectively regulated the signal axis, inhibited angiogenesis, and alleviated RA symptoms. In vitro, TNF-ɑ enhanced the VEGF/SphK1/S1P pathway in a co-culture model of fibroblast-like synoviocytes (FLS) and vascular endothelial cells (VEC). GE induced downregulation of VEGF in FLS, restored the dynamic balance of pro-/antiangiogenic factors, and suppressed SphK1/S1P signaling in VEC, resulting in lower proliferation activity, migration ability, tube formation ability, and S1P secretion ability of VEC cells. Additionally, SphK1-specific small interfering RNA (siRNA) blocked the VEGF/SphK1/S1P cascade, which can effectively alleviate the stimulatory effect of FLS on VEC and further enhanced the therapeutic effect of GE. Taken together, our results demonstrate that GE suppresses the VEGF/SphK1/S1P pathway and alleviates the stimulation of VEC by FLS, thereby preventing angiogenesis and promoting therapeutic effects against RA.


Assuntos
Artrite Reumatoide , Iridoides/farmacologia , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Células Endoteliais , Fibroblastos , Humanos , Receptores de Esfingosina-1-Fosfato , Membrana Sinovial , Fator A de Crescimento do Endotélio Vascular
2.
Zhongguo Zhong Yao Za Zhi ; 44(2): 364-371, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30989959

RESUMO

To investigate the " drug-guide" effect of Achyranthes bidentata saponins( ABS) and geniposide( GE) in the treatment on adjuvant arthritis( AA) rats. A UHPLC-MS/MS method for the quantitative determination of GE,zingibroside R1,ginsenoside Ro and chikusetsu saponin Ⅳa in rat blood and joint dialysate was established. After single or combined administration with ABS and GE was given to AA rat model,a microdialysis sampling method for rat joint cavity and jugular vein blood vessels was established to collect microdialysis samples. Waters Acquity HSS C_(18) column was used to separate the above four components,with mobile phase as acetonitrile-0. 1% formic acid water as mobile phase for gradient elution. ESI source was adopted for mass spectra in a negative ion scanning mode. Multiple reaction monitoring( MRM) mode was applied to detect the above four components. The methodological results showed that GE,zingibroside R1,ginsenoside Ro and chikusetsu saponin Ⅳa demonstrated a good linear relationship within the concentration ranges of 2-4 000,16-4 096,14-3 584,23-5 888 µg·L-1 respectively. The precision,accuracy,stability and matrix effect of these four ingredients reached the requirements of quantitative analysis of biological samples. The pharmacokinetic results demonstrated that the combined administration of ABS and GE( 60 mg·kg~(-1)+60 mg·kg~(-1)) can increase the degree of GE in joint cavity distribution,and the AUCjoint/AUCplasmwere twice of that of single administration of GE( 60 mg·kg~(-1)),which indicated that ABS might played a vital role in GE's distribution to joint cavity. Moreover,there was no significant difference between the distribution trend of total three ABS and GE in rats. The pharmacodynamics results showed that the combined administration of ABS and GE has stronger effects on paw swelling,arthritis index and synovial pathomorphology of AA rats than single administration of GE,which suggested that ABS might improve GE's anti-inflammatory effect in AA rats. Based on the above results,ABS has a targeting effect in increasing GE's concentration in joint cavity,with a synergy in efficacy.


Assuntos
Achyranthes/química , Artrite Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Iridoides/farmacocinética , Microdiálise , Ratos , Reprodutibilidade dos Testes , Saponinas/farmacocinética , Espectrometria de Massas em Tandem
3.
Front Pharmacol ; 11: 584176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363467

RESUMO

The activated Gα protein subunit (Gαs) and the inhibitory Gα protein subunit (Gαi) are involved in the signal transduction of G protein coupled receptors (GPCRs). Moreover, the conversion of Gαi/Gαs can couple with sphingosine-1-phosphate receptors (S1PRs) and have a critical role in rheumatoid arthritis (RA). Through binding to S1PRs, sphingosine-1-phosphate (S1P) leads to activation of the pro-inflammatory signaling in rheumatoid arthritis synovial fibroblasts (RASFs). Geniposide (GE) can alleviate RASFs dysfunctions to against RA. However, its underlying mechanism of action in RA has not been elucidated so far. This study aimed to investigate whether GE could regulate the biological functions of MH7A cells by inhibiting S1PR1/3 coupling Gαi/Gαs conversion. We use RASFs cell line, namely MH7A cells, which were obtained from the patient with RA and considered to be the main effector cells in RA. The cells were stimulated with S1P (5 µmol/L) and then were treated with or without different inhibitors: Gαi inhibitor pertussis toxin (0.1 µg/mL), S1PR1/3 inhibitor VPC 23019 (5 µmol/L), Gαs activator cholera toxin (1 µg/mL) and GE (25, 50, and 100 µmol/L) for 24 h. The results showed that GE may inhibit the abnormal proliferation, migration and invasion by inhibiting the S1P-S1PR1/3 signaling pathway and activating Gαs or inhibiting Gαi protein in MH7A cells. Additionally, GE could inhibit the release of inflammatory factors and suppress the expression of cAMP, which is the key factor of the conversion of Gαi and Gαs. GE could also restore the dynamic balance of Gαi and Gαs by suppressing S1PR1/3 and inhibiting Gαi/Gαs conversion, in a manner, we demonstrated that GE inhibited the activation of Gα downstream ERK protein as well. Taken together, our results indicated that down-regulation of S1PR1/3-Gαi/Gαs conversion may play a critical role in the effects of GE on RA and GE could be an effective therapeutic agent for RA.

4.
Int Immunopharmacol ; 65: 284-294, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30342345

RESUMO

Geniposide (GE) is an active component isolated from the fruit of Gardenia jasminoides Ellis that has anti-inflammatory and other pharmacological effects; however, the underlying mechanism of GE action has not been elucidated in rheumatoid arthritis (RA). Previous studies have shown that GE plays a therapeutic role in RA via regulation of the integrin beta 1 (Itgß1)-mediated Ras-Erk1/2 signalling pathway. However, the specific mechanism of GE action on Itgß1 has not been clarified. Recent evidence indicates that microRNAs (miRNAs) are involved in the development of RA. In this study, we developed a miRNA-124a-based synoviocyte repair strategy. We demonstrated that miRNA-124a can directly inhibit the expression of the Itgß1 gene and decrease TNF-α-stimulated cell proliferation in vitro. MH7A cells were obtained from the patient with RA and treated with GE in the presence of TNF-α (10 ng/mL). Additionally, we demonstrated that the expression of miRNA-124a can be regulated by GE. GE upregulated the expression of miRNA-124a and decreased the expression of Itgß1 at the mRNA and protein levels. The results of the present study are the first to suggest that GE inhibits TNF-α-stimulated cell proliferation and blocks the activation of the Ras-Erk1/2 pathway via the upregulation of miRNA-124a expression. Our study elucidates the role of miRNA-124a as a protected miRNA in RA and may provide a novel strategy for the diagnosis and treatment of RA in the future.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Fibroblastos/fisiologia , Iridoides/farmacologia , MicroRNAs/genética , Sinoviócitos/fisiologia , Linhagem Celular , Proliferação de Células , Gardenia/imunologia , Regulação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Oncogênica p21(ras)/metabolismo , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA