RESUMO
In recent years, infections caused by multidrug-resistant (MDR) bacteria have greatly threatened human health and imposed a burden on global public health. To overcome this crisis, there is an urgent need to seek effective alternatives to single antibiotic therapy to circumvent drug resistance and prevent MDR bacteria. According to previous reports, cinnamaldehyde exerts antibacterial activity against drug-resistant Salmonella spp. This study was conducted to investigate whether cinnamaldehyde has a synergistic effect on antibiotics when used in combination, we found that cinnamaldehyde enhanced the antibacterial activity of ceftriaxone sodium against MDR Salmonella in vitro by significantly reduced the expression of extended-spectrum beta-lactamase, inhibiting the development of drug resistance under ceftriaxone selective pressure in vitro, damaging the cell membrane, and affecting its basic metabolism. In addition, it restored the activity of ceftriaxone sodium against MDR Salmonella in vivo and inhibited peritonitis caused by ceftriaxone resistant strain of Salmonella in mice. Collectively, these results revealed that cinnamaldehyde can be used as a novel ceftriaxone adjuvant to prevent and treat infections caused by MDR Salmonella, mitigating the possibility of producing further mutant strains.
Assuntos
Antibacterianos , Ceftriaxona , Humanos , Animais , Camundongos , Ceftriaxona/farmacologia , Antibacterianos/farmacologia , Salmonella , Acroleína/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade MicrobianaRESUMO
Salmonella Typhimurium (S. Typhimurium), a common foodborne pathogen, severely harms the public and food security. Type I fimbriae (T1F) of S. Typhimurium, plays a crucial role in the pathogenic processes; it mediates the adhesion of bacteria to the mannose receptor on the host cell, assists the bacteria to invade the host cell, and triggers an inflammatory response. Cinnamaldehyde is the main ingredient in cinnamon essential oil. In this study, cinnamaldehyde was demonstrated to inhibit the expression of T1F by hemagglutination inhibition test, transmission electron microscopy, and biofilms. The mechanism of cinnamaldehyde action was studied by proteomics technology, PCR and Western blotting. The results showed that cinnamaldehyde can inhibit T1F in S. typhimurium without the growth of bacteria, by regulating the level of expression and transcription of fimA, fimZ, fimY, fimH and fimW. Proteomics results showed that cinnamaldehyde downregulated the subunits and regulators of T1F. In addition, the invasion assays proved that cinnamaldehyde can indeed reduce the ability of S. typhimurium to adhere to cells. The results of animal experiments showed that the colonization in the intestinal tract and the expression levels of inflammatory cytokine were significantly decreased, and the intestinal mucosal immune factors MUC1 and MUC2 were increased under cinnamaldehyde treatment. Therefore, cinnamaldehyde may be a potential drug to target T1F to treat Salmonella infections.
Assuntos
Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Animais , Salmonella typhimurium/metabolismo , Fímbrias Bacterianas/metabolismo , Acroleína/farmacologia , Acroleína/metabolismoRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is among the common drug resistant bacteria, which has gained worldwide attention due to its high drug resistance and infection rates. Biofilms produced by S. aureus are known to increase antibiotic resistance, making the treatment of S. aureus infections even more challenging. Hence, inhibition of biofilm formation has become an alternative strategy for controlling persistent infections. In this study, we evaluated the efficacy of geraniol as a treatment for MRSA biofilm infection. The results of crystal violet staining indicated that 256 µg/mL concentration of geraniol inhibited USA300 biofilm formation by 86.13% and removed mature biofilms by 49.87%. Geraniol exerted its anti-biofilm effect by influencing the major components of the MRSA biofilm structure. We found that geraniol inhibited the synthesis of major virulence factors, including staphyloxanthin and autolysins. The colony count revealed that geraniol inhibited staphyloxanthin and sensitized USA300 cells to hydrogen peroxide. Interestingly, geraniol not only reduced the release of extracellular nucleic acids (eDNA) but also inhibited cell autolysis. Real-time polymerase chain reaction data revealed the downregulation of genes involved in biofilm formation, which verified the results of the phenotypic analysis. Geraniol increased the effect of vancomycin in eliminating USA300 biofilms in a mouse infection model. Our findings revealed that geraniol effectively inhibits biofilm formation in vitro. Furthermore, in combination with vancomycin, geraniol can reduce the biofilm adhesion to the implant in mice. This suggests the potential of geraniol as an anti-MRSA biofilm drug and can provide a solution for the clinical treatment of biofilm infection.
RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is a common human pathogen that causes several difficult-to-treat infections, including biofilm-associated infections. The biofilm-forming ability of S. aureus plays a pivotal role in its resistance to most currently available antibiotics, including vancomycin, which is the first-choice drug for treating MRSA infections. In this study, the ability of thymol (a monoterpenoid phenol isolated from plants) to inhibit biofilm formation and to eliminate mature biofilms, was assessed. We found that thymol could inhibit biofilm formation and remove mature biofilms by inhibiting the production of polysaccharide intracellular adhesin (PIA) and the release of extracellular DNA (eDNA). However, cotreatment with thymol and vancomycin was more effective at eliminating MRSA biofilms, in a mouse infection model, than monotherapy with vancomycin. Comparative histopathological analyses revealed that thymol reduced the pathological changes and inflammatory responses in the wounds. Assessments of white blood cell counts and serum TNF-α and IL-6 levels showed reduced inflammation and an increased immune response following treatment with thymol and vancomycin. These results indicate that combinatorial treatment with thymol and vancomycin has the potential to serve as a more effective therapy for MRSA biofilm-associated infections than vancomycin monotherapy.