Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 45(4): 587-600, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891688

RESUMO

Chemosensation in the mammalian nose comprises detection of odorants, irritants and pheromones. While the traditional view assigned one distinct sub-system to each stimulus type, recent research has produced a more complex picture. Odorants are not only detected by olfactory sensory neurons but also by the trigeminal system. Irritants, in turn, may have a distinct odor, and some pheromones are detected by the olfactory epithelium. Moreover, it is well established that irritants change odor perception and vice versa. A wealth of psychophysical evidence on olfactory-trigeminal interactions in humans contrasts with a paucity of structural insight. In particular, it is unclear whether the two systems communicate just by sharing stimuli, or whether neuronal connections mediate cross-modal signaling. One connection could exist in the olfactory bulb that performs the primary processing of olfactory signals and receives trigeminal innervation. In the present study, neuroanatomical tracing of the mouse ethmoid system illustrates how peptidergic fibers enter the glomerular layer of the olfactory bulb, where local microcircuits process and filter the afferent signal. Biochemical assays reveal release of calcitonin gene-related peptide from olfactory bulb slices and attenuation of cAMP signaling by the neuropeptide. In the non-stimulated tissue, the neuropeptide specifically inhibited the basal activity of calbindin-expressing periglomerular interneurons, but did not affect the basal activity of neurons expressing calretinin, parvalbumin, or tyrosine hydroxylase, nor the activity of astrocytes. This study represents a first step towards understanding trigeminal neuromodulation of olfactory-bulb microcircuits and provides a working hypothesis for trigeminal inhibition of olfactory signal processing. This article is protected by copyright. All rights reserved.

2.
Eur J Neurosci ; 37(4): 572-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23205840

RESUMO

The mammalian olfactory epithelium contains olfactory receptor neurons and trigeminal sensory endings. The former mediate odor detection, the latter the detection of irritants. The two apparently parallel chemosensory systems are in reality interdependent in various well-documented ways. Psychophysical studies have shown that virtually all odorants can act as irritants, and that most irritants have an odor. Thus, the sensory perception of odorants and irritants is based on simultaneous input from the two systems. Moreover, functional interactions between the olfactory system and the trigeminal system exist on both peripheral and central levels. Here we examine the impact of trigeminal stimulation on the odor response of olfactory receptor neurons. Using an odorant with low trigeminal potency (phenylethyl alcohol) and a non-odorous irritant (CO(2) ), we have explored this interaction in psychophysical experiments with human subjects and in electroolfactogram (EOG) recordings from rats. We have demonstrated that simultaneous activation of the trigeminal system attenuates the perception of odor intensity and distorts the EOG response. On the molecular level, we have identified a route for this cross-modal interaction. The neuropeptide calcitonin-gene related peptide (CGRP), which is released from trigeminal sensory fibres upon irritant stimulation, inhibits the odor response of olfactory receptor neurons. CGRP receptors expressed by these neurons mediate this neuromodulatory effect. This study demonstrates a site of trigeminal-olfactory interaction in the periphery. It reveals a pathway for trigeminal impact on olfactory signal processing that influences odor perception.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais/fisiologia , Adulto , Animais , Eletroculografia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Irritantes/farmacologia , Masculino , Odorantes , Mucosa Olfatória/metabolismo , Ratos , Receptores Odorantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Trigêmeo/fisiologia , Adulto Jovem
3.
Proteomics ; 9(2): 322-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19086097

RESUMO

Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca(2+) for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC-ESI-MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.


Assuntos
Cílios/química , Neurônios Receptores Olfatórios/química , Proteínas/química , Proteoma , Receptores Odorantes/química , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Animais , Cromatografia Líquida , Cílios/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Bases de Dados de Proteínas , Isoenzimas/química , Isoenzimas/metabolismo , Microscopia Eletrônica de Varredura , Mucosa Olfatória/anatomia & histologia , Neurônios Receptores Olfatórios/metabolismo , Proteínas/metabolismo , Ratos , Ratos Wistar , Receptores Odorantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
J Comp Neurol ; 515(5): 585-99, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19480000

RESUMO

The chemosensory neuroepithelia of the vertebrate olfactory system share a life-long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrophin 2, a member of the bestrophin family of calcium-activated chloride channels. This channel was recently proposed to operate as a transduction channel in olfactory sensory cilia. We raised a polyclonal antibody against bestrophin 2 and characterized the expression pattern of this protein in the mouse main olfactory epithelium, septal organ of Masera, and vomeronasal organ. Comparison with the maturation markers growth-associated protein 43 and olfactory marker protein revealed that bestrophin 2 was expressed in developing sensory neurons of all chemosensory neuroepithelia, but was restricted to proximal cilia in mature sensory neurons. Our results suggest that bestrophin 2 plays a critical role during differentiation and growth of axons and cilia. In mature olfactory receptor neurons, it appears to support growth and function of sensory cilia.


Assuntos
Canais de Cloreto/metabolismo , Proteínas do Olho/metabolismo , Neurogênese/fisiologia , Mucosa Olfatória/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Axônios/fisiologia , Bestrofinas , Canais de Cloreto/genética , Cílios/fisiologia , Proteínas do Olho/genética , Humanos , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/citologia , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Órgão Vomeronasal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA