RESUMO
Although great progress has been made in the diagnostic and treatment options for dyslipidemias, unawareness, underdiagnosis and undertreatment of these disorders remain a significant global health concern. Growth in digital applications and newer models of care provide novel tools to improve the management of chronic conditions such as dyslipidemia. In this review, we discuss the evolving landscape of lipid management in the 21st century, current treatment gaps and possible solutions through digital health and new models of care. Our discussion begins with the history and development of value-based care and the national establishment of quality metrics for various chronic conditions. These concepts on the level of healthcare policy not only inform reimbursements but also define the standard of care. Next, we consider the advances in atherosclerotic cardiovascular disease risk score calculators as well as evolving imaging modalities. The impact and growth of digital health, ranging from telehealth visits to online platforms and mobile applications, will also be explored. We then evaluate the ways in which machine learning and artificial intelligence-driven algorithms are being utilized to address gaps in lipid management. From an organizational perspective, we trace the redesign of medical practices to incorporate a multidisciplinary team model of care, recognizing that atherosclerotic cardiovascular disease risk is multifaceted and requires a comprehensive approach. Finally, we anticipate the future of dyslipidemia management, assessing the many ways in which atherosclerotic cardiovascular disease burden can be reduced on a population-wide scale.
RESUMO
Sickle cell disease (SCD) is a disorder with repetitive vaso-occlusive crises resulting in microvascular obstruction and tissue ischemia that may lead to multi-organ ischemia and dysfunction. Nailfold videocapillaroscopy (NFC) is an imaging technique utilized in clinical rheumatology to visualize capillaries located near the fingertip. To characterize NFC abnormalities in the setting of pediatric SCD, we performed NFC using a video capillaroscope on 8 digits in 44 stable SCD patients and 65 age matched healthy controls. Mean capillary number was lower (6.4 ± 1.3 vs 7.5 ± 1.8, p = 0.001) in the SCD group compared to controls. The percentage of dilated capillaries was similar (7.1 ± 8.3 vs. 5.9 ± 8.2, p = 0.4). The large majority of capillaries visualized in the SCD and control groups were normal capillary types per the EULAR definition, with a similar percentage of normal, nonspecific capillary morphologies and abnormal types. Regarding normal capillary sub-types, the SCD group and controls exhibited similar percentages of stereotype hairpin shapes, and tortuous or once or twice crossing type capillaries. On multivariate analyses, mean capillary number was independently associated with SCD after adjusting for age, body mass index, systolic blood pressure and gender. In conclusion, pediatric SCD is associated with lower capillary number but similar percentage of dilated capillaries and morphology on NFC. In our SCD cohort, capillary number was unrelated to our available markers of disease severity, including history of sickle crises, previous hospitalization for crises or Hemoglobin F levels.
Assuntos
Anemia Falciforme/diagnóstico por imagem , Angioscopia Microscópica , Microvasos/diagnóstico por imagem , Unhas/irrigação sanguínea , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Densidade Microvascular , Valor Preditivo dos TestesRESUMO
Sickle cell disease (SCD) is a disorder characterized by repetitive vaso-occlusive crises causing microvascular obstruction, tissue ischemia and pain that may lead to chronic multi-organ ischemic sequelae. Nailfold videocapillaroscopy (NFC) is a non-invasive imaging technique used in clinical rheumatology to directly visualize capillaries located near the fingertip. To characterize NFC abnormalities in the setting of SCD, we performed NFC on 71 SCD patients and 70 age matched controls using a video capillaroscope on 8 digits. As compared to controls, mean capillary number was lower and the final capillary score (measure of capillary dropout inversely related to capillary density) was higher in the SCD group. The SCD group had a lower percentage of stereotype hairpin shapes and a higher percentage of crossing type capillaries. On multivariate linear analyses, both mean capillary number and final capillary score were independently associated with SCD after adjusting for age, body mass index, and gender. SCD was associated with more dilated capillaries but similar numbers of hemorrhages. In conclusion, SCD is associated with lower capillary density and more dilated capillaries on NFC. These changes appear unrelated to markers of disease severity including frequency of sickle crises, number of transfusions, and HbS levels. The relation between NFC and target organ involvement merits further study.
Assuntos
Anemia Falciforme/complicações , Capilares/patologia , Angioscopia Microscópica , Unhas/efeitos dos fármacos , Doenças Vasculares/patologia , Adulto , Anemia Falciforme/diagnóstico , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Doenças Vasculares/etiologia , Adulto JovemRESUMO
BACKGROUND: Computed tomography aortic valve calcium (AVC) score has accepted value for diagnosing and predicting outcomes in aortic stenosis (AS). Multi-energy CT (MECT) allows virtual non-contrast (VNC) reconstructions from contrast scans. We aim to compare the VNC-AVC score to the true non-contrast (TNC)-AVC score for assessing AS severity. METHODS: We prospectively included patients undergoing a MECT for transcatheter aortic valve replacement (TAVR) planning. TNC-AVC was acquired before contrast, and VNC-AVC was derived from a retrospectively gated contrast-enhanced scan. The Agatston scoring method was used for quantification, and linear regression analysis to derive adjusted-VNC values. RESULTS: Among 109 patients (55% female) included, 43% had concordant severe and 14% concordant moderate AS. TNC scan median dose-length product was 116 âmGy∗cm. The median TNC-AVC was 2,107 AU (1,093-3,372), while VNC-AVC was 1,835 AU (1293-2,972) after applying the coefficient (1.46) and constant (743) terms. A strong correlation was demonstrated between methods (r â= â0.93; p â< â0.001). Using accepted thresholds (>1,300 AU for women and >2,000 AU for men), 65% (n â= â71) of patients had severe AS by TNC-AVC and 67% (n â= â73) by adjusted-VNC-AVC. After estimating thresholds for adjusted-VNC (>1,564 AU for women and >2,375 AU for men), 56% (n â= â61) had severe AS, demonstrating substantial agreement with TNC-AVC (κ â= â0.77). CONCLUSIONS: MECT-derived VNC-AVC showed a strong correlation with TNC-AVC. After adjustment, VNC-AVC demonstrated substantial agreement with TNC-AVC, potentially eliminating the requirement for an additional scan and enabling reductions in both radiation exposure and acquisition time.
Assuntos
Estenose da Valva Aórtica , Tomografia Computadorizada por Raios X , Masculino , Humanos , Feminino , Estudos Retrospectivos , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X/métodos , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Constrição Patológica , CálcioRESUMO
BACKGROUND: Coronary artery calcium (CAC), thoracic aorta calcification (TAC), non-alcoholic fatty liver disease (NAFLD), and epicardial adipose tissue (EAT) are associated with atherosclerotic cardiovascular disease (ASCVD) and heart failure (HF). OBJECTIVES: We aimed to determine whether these cardiometabolic and atherosclerotic risk factors identified by non-contrast chest computed tomography (CT) are associated with HF hospitalizations in patients with LDL-C≥ 190 mg/dL. METHODS: We conducted a retrospective cohort analysis of patients with LDL-C ≥190 mg/dL, aged ≥40 years without established ASCVD or HF, who had a non-contrast chest CT within 3 years of LDL-C measurement. Ordinal CAC, ordinal TAC, EAT, and NAFLD were measured. Kaplan-Meier curves and multivariable Cox regression models were built to ascertain the association with HF hospitalization. RESULTS: We included 762 patients with median age 60 (53-68) years, 68% (n=520) female, and median LDL-C level of 203 (194-216) mg/dL. Patients were followed for 4.7 (interquartile range 2.75-6.16) years, and 107 (14%) had a HF hospitalization. Overall, 355 (47%) patients had CAC=0, 210 (28%) had TAC=0, 116 (15%) had NAFLD, and median EAT was 79 mL (49-114). Moderate-Severe CAC (log-rank p<0.001) and TAC (log-rank p=0.006) groups were associated with increased HF hospitalizations. This association persisted when considering myocardial infarction (MI) as a competing risk. NAFLD and EAT volume were not associated with HF. CONCLUSIONS: In patients without established ASCVD and LDL-C≥190 mg/dL, CAC was independently associated with increased HF hospitalizations while TAC, NAFLD, and EAT were not.
Assuntos
Aterosclerose , Insuficiência Cardíaca , Hipercolesterolemia , Tomografia Computadorizada por Raios X , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/epidemiologia , Idoso , Aterosclerose/diagnóstico por imagem , Aterosclerose/complicações , Hipercolesterolemia/complicações , Hipercolesterolemia/diagnóstico por imagem , Estudos Retrospectivos , Fenótipo , Hospitalização , Fatores de RiscoRESUMO
Atherosclerotic cardiovascular disease risk (ASCVD) is an ongoing epidemic, and lipid abnormalities are its primordial cause. Most individuals suffering a first ASCVD event are previously asymptomatic and often do not receive preventative therapies. The cornerstone of primary prevention has been the identification of individuals at risk through risk calculators based on clinical and laboratory traditional risk factors plus risk enhancers. However, it is well accepted that a clinical risk calculator misclassifies a significant proportion of individuals leading to the prescription of a lipid-lowering medication with very little yield or a missed opportunity for lipid-lowering agents with a potentially preventable event. The development of coronary artery calcium scoring (CAC) and CT coronary angiography (CCTA) provide complementary tools to directly visualize coronary plaque and other risk-modifying imaging components that can potentially provide individualized lipid management. Understanding patient selection for CAC or potentially CCTA and the risk implications of the different parameters provided, such as CAC score, coronary stenosis, plaque characteristics and burden, epicardial adipose tissue, and pericoronary adipose tissue, have grown more complex as technologies evolve. These parameters directly affect the shared decision with patients to start or withhold lipid-lowering therapies, to adjust statin intensity or LDL cholesterol goals. Emerging lipid lowering studies with non-invasive imaging as a guide to patient selection and treatment efficacy, plus the evolution of lipid lowering therapies from statins to a diverse armament of newer high-cost agents have pushed these two fields forward with a complex interaction. This review will discuss existing risk estimators, and non-invasive imaging techniques for subclinical coronary atherosclerosis, traditionally studied using CAC and more recently CCTA with qualitative and quantitative measurements. We will also explore the current data, gaps of knowledge and future directions on the use of these techniques in the risk-stratification and guidance of lipid management.
RESUMO
Introduction: Low-attenuation non-calcified plaque (LAP) burden and vascular inflammation by pericoronary adipose tissue (PCAT) measured from coronary CT angiography (CCTA) have shown to be predictors of cardiovascular outcomes. We aimed to investigate the relationships of cardiometabolic risk factors including lipoprotein(a) and epicardial adipose tissue (EAT) with CCTA high-risk imaging biomarkers, LAP and vascular inflammation. Methods: The patient population consisted of consecutive patients who underwent CCTA for stable chest pain and had a complete cardiometabolic panel including lipoprotein(a). Plaque, PCAT and EAT were measured from CT using semiautomated software. Elevated LAP burden and PCAT attenuation were defined as ≥4% and ≥70.5 HU, respectively. The primary clinical end-point was a composite of myocardial infarction, revascularization or cardiovascular death. Results: A total of 364 consecutive patients were included (median age 56 years, 64% female); the majority of patients were of Hispanic (60%), and the rest were of non-Hispanic Black (21%), non-Hispanic White (6%) and non-Hispanic Asian (4%) race/ethnicity. The prevalence of elevated LAP burden and PCAT attenuation was 31 and 18%, respectively, while only 8% had obstructive stenosis. There were significant differences in plaque characteristics among different racial/ethnic groups (p<0.001). Lipoprotein(a) correlated with LAP burden in Hispanic patients. Patients with elevated LAP were older, more likely to be have diabetes, hypertension, hyperlipidemia and smoke with higher CAC and EAT volume (all P<0.05). Patients with elevated LAP were more likely to develop the primary clinical outcome (p<0.001) but those with elevated PCAT were not (p=0.797). Conclusion: The prevalence of LAP and PCAT attenuation were 31 and 18%, respectively. Lipoprotein(a) levels correlated with LAP burden in Hispanic patients. Age, male sex, hypertension and hyperlipidemia increased the odds of elevated LAP, which showed prognostic significance.
RESUMO
BACKGROUND: Coronary artery calcium scoring (CAC) has garnered attention in the diagnostic approach to chest pain patients. However, little is known about the interplay between zero CAC, sex, race, ethnicity, and quantitative coronary plaque analysis. METHODS: We conducted a retrospective analysis from our computed tomography registry of patients with stable angina without prior myocardial infarction or revascularization undergoing coronary computed tomography angiography at Montefiore Healthcare System. Follow-up end points collected included invasive angiography, type-1 myocardial infarction, coronary revascularization, cardiovascular and all-cause death. RESULTS: A total of 2249 patients were included (66% female). The median follow-up was 5.5 years. The median age of those without CAC was 52 years (interquartile range, 44-59) and 60 years (interquartile range, 53-68) in those with CAC. Most patients were Hispanic (58%), and the rest were non-Hispanic Black (28%), non-Hispanic White (10%), and non-Hispanic Asian (5%). The majority had CAC=0 (55%). The negative predictive value of CAC=0 was 92.8%, 99.9%, and 99.9% for any plaque, obstructive coronary artery stenosis, and the composite outcome of all-cause death, myocardial infarction, or coronary revascularization, respectively. Among patients without CAC (n=1237), 89 patients (7%) had evidence of plaque on their coronary computed tomography angiography with a median low-attenuation noncalcified plaque burden of 4% (2-7). There were no significant differences in the negative predictive value for CAC=0 by sex, race, or ethnicity. Patients with ≥2 risk factors had higher odds of having plaque with zero CAC. CONCLUSIONS: In summary, no sex, race, or ethnicity differences were demonstrated in the negative predictive value of a zero CAC; however, patients with ≥2 risk factors had a higher prevalence of plaque. A small percentage (7%) of symptomatic patients undergoing coronary computed tomography angiography with zero CAC had noncalcified coronary plaque, with the implication that caution is needed for downscaling of preventive treatment in patients with zero CAC, chest pain, and multiple risk factors.
Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Doença da Artéria Coronariana/diagnóstico , Angiografia Coronária/métodos , Estudos Retrospectivos , Placa Aterosclerótica/complicações , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Dor no Peito , Fatores de Risco , Valor Preditivo dos Testes , Medição de RiscoRESUMO
INTRODUCTION: BioMEMS relates to the implementation of Micro-Electro-Mechanical Systems (MEMS), in the biological and medical sphere. BioMEMS sensors are being utilized for many clinical applications, including a wireless urinary pressure system, right heart pressure sensor, and measurements on shearing force on the vascular system An important application of BioMEMS is on Heart failure (HF), a common disease, with a prevalence of 10% or more in persons 70 years of age or older, associated with high morbidity and mortality. HF affects over 5 million people and contributes to over 200,000 deaths a year in the United States alone. AREAS COVERED: The purpose of this paper is to provide a short overview on the successful implementation of BioMEMS sensors in heart failure and vascular medicine. Expert commentary: BioMEMS devices have overcome current limitations in pharmacotherapies for resistant hypertension by electrical modulation of the baroreceeptors. This represents a step towards the development of biomedical micro-devices for those conditions in which pharmacotherapies result poorly effective or elicit unacceptable toxicity.