Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(27): e2207999, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37012608

RESUMO

Iron oxyhydroxide has been considered an auspicious electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis due to its suitable electronic structure and abundant reserves. However, Fe-based materials seriously suffer from the tradeoff between activity and stability at a high current density above 100 mA cm-2 . In this work, the Ce atom is introduced into the amorphous iron oxyhydroxide (i.e., CeFeOx Hy ) nanosheet to simultaneously improve the intrinsic electrocatalytic activity and stability for OER through regulating the redox property of iron oxyhydroxide. In particular, the Ce substitution leads to the distorted octahedral crystal structure of CeFeOx Hy , along with a regulated coordination site. The CeFeOx Hy electrode exhibits a low overpotential of 250 mV at 100 mA cm-2 with a small Tafel slope of 35.1 mVdec-1 . Moreover, the CeFeOx Hy electrode can continuously work for 300 h at 100 mA cm-2 . When applying the CeFeOx Hy nanosheet electrode as the anode and coupling it with the platinum mesh cathode, the cell voltage for overall water splitting can be lowered to 1.47 V at 10 mA cm-2 . This work offers a design strategy for highly active, low-cost, and durable material through interfacing high valent metals with earth-abundant oxides/hydroxides.

2.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34315143

RESUMO

Intrinsic two-dimensional (2D) magnetic materials own strong long-range magnetism while their characteristics of the ultrathin thickness and smooth surface provide an ideal platform for manipulating the magnetic properties at 2D limit. This makes them to be potential candidates in various spintronic applications compared to their corresponding bulk counterparts. The discovery of magnetic ordering in 2D CrI3and Gr2Ge2Te6nanostructures stimulated tremendous research interest in both experimental and theoretical studies on various intrinsic magnets at 2D limit. This review gives a comprehensive overview of the recent progress on the emergent 2D magnets and heterostructures. Firstly, several kinds of typical 2D magnetic materials discovered in the last few years and their fabrication methods are summarized in detail. Secondly, the current strategies for manipulating magnetic properties in 2D materials are further discussed. Then, the recent advances on the construction of representative van der Waals magnetic heterostructures and their respective performance are provided. With the hope of motivating the researchers in this area, we finally offered the challenges and outlook on 2D magnetism.

3.
Adv Mater ; 36(21): e2308101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341618

RESUMO

Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of C─C and C─H bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.

4.
Nat Commun ; 15(1): 5174, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890357

RESUMO

Steering on the intrinsic active site of an electrode material is essential for efficient electrochemical biomass upgrading to valuable chemicals with high selectivity. Herein, we show that an in-situ surface reconstruction of a two-dimensional layered CdPS3 nanosheet electrocatalyst, triggered by electrolyte, facilitates efficient 5-hydroxymethylfurfural (HMF) hydrogenation to 2,5-bis(hydroxymethyl)furan (BHMF) under ambient condition. The in-situ Raman spectroscopy and comprehensive post-mortem catalyst characterizations evidence the construction of a surface-bounded CdS layer on CdPS3 to form CdPS3/CdS heterostructure. This electrocatalyst demonstrates promising catalytic activity, achieving a Faradaic efficiency for BHMF reaching 91.3 ± 2.3 % and a yield of 4.96 ± 0.16 mg/h at - 0.7 V versus reversible hydrogen electrode. Density functional theory calculations reveal that the in-situ generated CdPS3/CdS interface plays a pivotal role in optimizing the adsorption of HMF* and H* intermediate, thus facilitating the HMF hydrogenation process. Furthermore, the reconstructed CdPS3/CdS heterostructure cathode, when coupled with MnCo2O4.5 anode, enables simultaneous BHMF and formate synthesis from HMF and glycerol substrates with high efficiency.

5.
Nanoscale ; 14(41): 15442-15450, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36222699

RESUMO

The concurrent photocatalytic synthesis of hydrogen gas and high-valued chemicals over two-dimensional semiconductors is extremely attractive to alleviate global energy and environmental concerns through directly using sunlight. Herein, a novel layered In4/3P2Se6 nanosheet is synthesized by a space confined chemical vapor conversion method, and it acts as a dual-functional photocatalyst to deliver the co-production of hydrogen gas and N-benzylidenebenzylamine from water reduction and selective benzylamine oxidation. The simultaneous yield of hydrogen gas and N-benzylidenebenzylamine is 895 µmol g-1 and 681 µmol g-1, respectively, within 16-hour continuous reaction involving a small amount of water in acetonitrile solvent. Moreover, 97.4% N-benzylidenebenzylamine selectivity from benzylamine oxidation can be achieved with continuous 10 hour-reaction only in acetonitrile solvent under ambient conditions. Further in situ electron paramagnetic resonance measurements and reaction optimization tests reveal that the reaction mechanism strongly relies on the conditions over the In4/3P2Se6 nanosheet photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA