Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 22(24): 6965-79, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25456390

RESUMO

The 2,4-diaminoquinazoline class of compounds has previously been identified as an effective inhibitor of Mycobacterium tuberculosis growth. We conducted an extensive evaluation of the series for its potential as a lead candidate for tuberculosis drug discovery. Three segments of the representative molecule N-(4-fluorobenzyl)-2-(piperidin-1-yl)quinazolin-4-amine were examined systematically to explore structure-activity relationships influencing potency. We determined that the benzylic amine at the 4-position, the piperidine at 2-position and the N-1 (but not N-3) are key activity determinants. The 3-deaza analog retained similar activity to the parent molecule. Biological activity was not dependent on iron or carbon source availability. We demonstrated through pharmacokinetic studies in rats that good in vivo compound exposure is achievable. A representative compound demonstrated bactericidal activity against both replicating and non-replicating M. tuberculosis. We isolated and sequenced M. tuberculosis mutants resistant to this compound and observed mutations in Rv3161c, a gene predicted to encode a dioxygenase, suggesting that the compound may act as a pro-drug.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Farmacorresistência Bacteriana/efeitos dos fármacos , Meia-Vida , Testes de Sensibilidade Microbiana , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
ACS Omega ; 2(9): 5873-5890, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023755

RESUMO

Nitazoxanide has antiparasitic and antibiotic activities including activity against Mycobacterium tuberculosis. We prepared and evaluated a set of its analogues to determine the structure-activity relationship, and identified several amide- and urea-based analogues with low micromolar activity against M. tuberculosis in vitro. Pharmacokinetics in the rat suggested a path forward to obtain bioavailable compounds. The series had a good microbiological profile with bactericidal activity in vitro against replicating and nonreplicating M. tuberculosis. Analogues had limited activity against other Gram-positive bacteria but no activity against Gram-negative bacteria. Our studies identified the key liability in this series as cytotoxicity. Future work concentrating on identifying the target(s) could assist in removing activity against eukaryotic cells.

3.
PLoS One ; 11(5): e0155209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171280

RESUMO

The 2-aminothiazole series has anti-bacterial activity against the important global pathogen Mycobacterium tuberculosis. We explored the nature of the activity by designing and synthesizing a large number of analogs and testing these for activity against M. tuberculosis, as well as eukaryotic cells. We determined that the C-2 position of the thiazole can accommodate a range of lipophilic substitutions, while both the C-4 position and the thiazole core are sensitive to change. The series has good activity against M. tuberculosis growth with sub-micromolar minimum inhibitory concentrations being achieved. A representative analog was selective for mycobacterial species over other bacteria and was rapidly bactericidal against replicating M. tuberculosis. The mode of action does not appear to involve iron chelation. We conclude that this series has potential for further development as novel anti-tubercular agents.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Tiazóis/síntese química , Tiazóis/farmacologia , Animais , Antituberculosos/química , Quelantes de Ferro/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA