Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29158273

RESUMO

IQG-607 is a metal complex previously reported as a promising anti-tuberculosis (TB) drug against isoniazid (INH)-resistant strains of Mycobacterium tuberculosis Unexpectedly, we found that INH-resistant clinical isolates were resistant to IQG-607. Spontaneous mutants resistant to IQG-607 were subjected to whole-genome sequencing, and all sequenced colonies carried alterations in the katG gene. The katG(S315T) mutation was sufficient to confer resistance to IQG-607 in both MIC assays and inside macrophages. Moreover, overexpression of the InhA(S94A) protein caused IQG-607's resistance.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Humanos , Isoniazida/farmacologia , Mutação/genética , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma/métodos
2.
Front Chem ; 8: 586294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330374

RESUMO

The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.

3.
Eur J Pharm Sci ; 111: 393-398, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037995

RESUMO

IQG-607 is an analog of isoniazid with anti-tuberculosis activity. This work describes the development and validation of an HPLC method to quantify pentacyano(isoniazid)ferrate(II) compound (IQG-607) and the pharmacokinetic studies of this compound in mice. The method showed linearity in the 0.5-50µg/mL concentration range (r=0.9992). Intra- and inter-day precision was <5%, and the recovery ranged from 92.07 to 107.68%. IQG-607 was stable in plasma for at least 30days at -80°C and, after plasma processing, for 4h in the auto-sampler maintained on ice (recovery >85%). The applicability of the method for pharmacokinetic studies was determined after intravenous (i.v.) and oral (fasted and fed conditions) administration to mice. IQG-607 levels in plasma were quantified at time points for up to 2.5h. A short half-life (t1/2) (1.14h), a high clearance (CL) (3.89L/h/kg), a moderate volume of distribution at steady state (Vdss) of 1.22L/kg, were observed after i.v. (50mg/kg) administration. Similar results were obtained for oral administration (250mg/kg) under fasted and fed conditions. The oral bioavailability (F), approximately 4%, was not altered by feeding. Plasma protein binding was 88.87±0.9%. The results described here provide novel insights into a pivotal criterion to warrant further efforts to be pursued towards attempts to translate this chemical compound into a chemotherapeutic agent to treat TB.


Assuntos
Antituberculosos/farmacocinética , Compostos Ferrosos/farmacocinética , Isoniazida/análogos & derivados , Animais , Antituberculosos/sangue , Área Sob a Curva , Estabilidade de Medicamentos , Compostos Ferrosos/sangue , Meia-Vida , Isoniazida/sangue , Isoniazida/farmacocinética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA