Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 17(1): 800, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29281998

RESUMO

BACKGROUND: While research has demonstrated the importance of a clean health care environment, there is a lack of research on the role portable medical equipment (PME) play in the transmission cycle of healthcare-acquired infections (HAIs). This study investigated the patterns and sequence of contact events among health care workers, patients, surfaces, and medical equipment in a hospital environment. METHODS: Research staff observed patient care events over six different 24 h periods on six different hospital units. Each encounter was recorded as a sequence of events and analyzed using sequence analysis and visually represented by network plots. In addition, a point prevalence microbial sample was taken from the computer on wheels (COW). RESULTS: The most touched items during patient care was the individual patient (850), bedrail (375), bed-surface (302), and bed side Table (223). Three of the top ten most common subsequences included touching PME and the patient: computer on wheels ➔ patient (62 of 274 total sequences, 22.6%, contained this sequence), patient ➔ COW (20.4%), and patient ➔ IV pump (16.1%). The network plots revealed large interconnectedness among objects in the room, the patient, PME, and the healthcare worker. CONCLUSIONS: Our results demonstrated that PME such as COW and IV pump were two of the most highly-touched items during patient care. Even with proper hand sanitization and personal protective equipment, this sequence analysis reveals the potential for contamination from the patient and environment, to a vector such as portable medical equipment, and ultimately to another patient in the hospital.


Assuntos
Infecção Hospitalar/transmissão , Modelos Teóricos , Equipamentos e Provisões , Mãos , Pessoal de Saúde , Hospitais , Humanos , Unidades de Terapia Intensiva
2.
Am J Infect Control ; 44(3): 299-303, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26684369

RESUMO

BACKGROUND: The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. METHODS: This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. RESULTS: In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. CONCLUSION: Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital-acquired infections.


Assuntos
Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Desinfecção/métodos , Raios Ultravioleta , Xenônio , Florida/epidemiologia , Hospitais Comunitários , Humanos , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA