Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
FASEB J ; 38(1): e23325, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117486

RESUMO

Obesity is driven by an imbalance between caloric intake and energy expenditure, causing excessive storage of triglycerides in adipose tissue at different sites around the body. Increased visceral adipose tissue (VAT) is associated with diabetes, while pericardial adipose tissue (PAT) is associated with cardiac pathology. Adipose tissue can expand either through cellular hypertrophy or hyperplasia, with the former correlating with decreased metabolic health in obesity. The aim of this study was to determine how VAT and PAT remodel in response to obesity, stress, and exercise. Here we have used the male obese Zucker rats, which carries two recessive fa alleles that result in the development of hyperphagia with reduced energy expenditure, resulting in morbid obesity and leptin resistance. At 9 weeks of age, a group of lean (Fa/Fa or Fa/fa) Zucker rats (LZR) and obese (fa/fa) Zucker rats (OZR) were treated with unpredictable chronic mild stress or exercise for 8 weeks. To determine the phenotype for PAT and VAT, tissue cellularity and gene expression were analyzed. Finally, leptin signaling was investigated further using cultured 3T3-derived adipocytes. Tissue cellularity was determined following hematoxylin and eosin (H&E) staining, while qPCR was used to examine gene expression. PAT adipocytes were significantly smaller than those from VAT and had a more beige-like appearance in both LZR and OZR. In the OZR group, VAT adipocyte cell size increased significantly compared with LZR, while PAT showed no difference. Exercise and stress resulted in a significant reduction in VAT cellularity in OZR, while PAT showed no change. This suggests that PAT cellularity does not remodel significantly compared with VAT. These data indicate that the extracellular matrix of PAT is able to remodel more readily than in VAT. In the LZR group, exercise increased insulin receptor substrate 1 (IRS1) in PAT but was decreased in the OZR group. In VAT, exercise decreased IRS1 in LZR, while increasing it in OZR. This suggests that in obesity, VAT is more responsive to exercise and subsequently becomes less insulin resistant compared with PAT. Stress increased PPAR-γ expression in the VAT but decreased it in the PAT in the OZR group. This suggests that in obesity, stress increases adipogenesis more significantly in the VAT compared with PAT. To understand the role of leptin signaling in adipose tissue remodeling mechanistically, JAK2 autophosphorylation was inhibited using 5 µM 1,2,3,4,5,6-hexabromocyclohexane (Hex) in cultured 3T3-derived adipocytes. Palmitate treatment was used to induce cellular hypertrophy. Hex blocked adipocyte hypertrophy in response to palmitate treatment but not the increase in lipid droplet size. These data suggest that leptin signaling is necessary for adipocyte cell remodeling, and its absence induces whitening. Taken together, our data suggest that leptin signaling is necessary for adipocyte remodeling in response to obesity, exercise, and psychosocial stress.


Assuntos
Tecido Adiposo , Leptina , Masculino , Ratos , Animais , Ratos Zucker , Pericárdio , Palmitatos , Estresse Psicológico , Hipertrofia , Obesidade
2.
Neural Comput ; 36(4): 645-676, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38457763

RESUMO

The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.


Assuntos
Microglia , Proteínas Proto-Oncogênicas c-akt , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Receptores Purinérgicos/metabolismo
3.
Bioorg Chem ; 147: 107304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643563

RESUMO

Increasing the selectivity of chemotherapies by converting them into prodrugs that can be activated at the tumour site decreases their side effects and allows discrimination between cancerous and non-cancerous cells. Herein, the use of metabolic glycoengineering (MGE) to selectively label MCF-7 breast cancer cells with tetrazine (Tz) activators for subsequent activation of prodrugs containing the trans-cyclooctene (TCO) moiety by a bioorthogonal reaction is demonstrated. Three novel Tz-modified monosaccharides, Ac4ManNTz 7, Ac4GalNTz 8, and Ac4SiaTz 16, were used for expression of the Tz activator within sialic-acid rich breast cancer cells' surface glycans through MGE. Tz expression on breast cancer cells (MCF-7) was evaluated versus the non-cancerous L929 fibroblasts showing a concentration-dependant effect and excellent selectivity with ≥35-fold Tz expression on the MCF-7 cells versus the non-cancerous L929 fibroblasts. Next, a novel TCO-N-mustard prodrug and a TCO-doxorubicin prodrug were analyzed in vitro on the Tz-bioengineered cells to probe our hypothesis that these could be activated via a bioorthogonal reaction. Selective prodrug activation and restoration of cytotoxicity were demonstrated for the MCF-7 breast cancer cells versus the non-cancerous L929 cells. Restoration of the parent drug's cytotoxicity was shown to be dependent on the level of Tz expression where the Ac4ManNTz 7 and Ac4GalNTz 8 derivatives (20 µM) lead to the highest Tz expression and full restoration of the parent drug's cytotoxicity. This work suggests the feasibility of combining MGE and tetrazine ligation for selective prodrug activation in breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Feminino , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Células MCF-7 , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Engenharia Metabólica , Sobrevivência Celular/efeitos dos fármacos
4.
Biomacromolecules ; 24(1): 213-224, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36520063

RESUMO

The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of ß-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.


Assuntos
Lipopeptídeos , Nanoestruturas , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Adesão Celular , Sequência de Aminoácidos , Mioblastos , Dicroísmo Circular
5.
PLoS Comput Biol ; 17(11): e1009520, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723961

RESUMO

Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology.


Assuntos
Cálcio/metabolismo , Microglia/metabolismo , Modelos Biológicos , Receptores Purinérgicos P2X/fisiologia , Trifosfato de Adenosina/metabolismo , Algoritmos , Membrana Celular/fisiologia , Humanos , Hidrólise , Potenciais da Membrana , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
6.
Adv Exp Med Biol ; 1349: 21-32, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35138608

RESUMO

Since its development on the cusp of the new millennium, automated patch clamp (APC) technology has matured over the last two decades. The increased throughput it afforded promised a new paradigm in ion channel recordings: It offered the potential to overcome the time-consuming, low-throughput bottleneck arising from manual patch clamp (MPC) investigations. This chapter highlights the advances in technology, showing how APC platforms have 'democratised' ion channel recordings, lowering the technical bar whilst substantially raising throughput. It will describe the background of the seminal first-generation and updates on advances in second-generation platforms. Furthermore, the chapter summarises the advances APC has made in ion channel studies, including finding new tool compounds and medicines. New functionality and applications on APC platforms give ion channel researchers flexible tools to study ion channels with high quality and high throughput.


Assuntos
Fenômenos Eletrofisiológicos , Canais Iônicos , Eletrofisiologia , Técnicas de Patch-Clamp
7.
World Dev ; 139: 105324, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33293754

RESUMO

Shortages of critical medical supplies during the COVID-19 pandemic have turned global value chains (GVCs) in personal protective equipment (PPE) into a political lightning rod. Some blame excessive outsourcing and foreign dependency for causing shortages, thus urging greater state intervention; others applaud GVCs for their flexibility and scaling up of production, while blaming states for undermining GVC operations. Using policy process-tracing and monthly trade data of seven PPE products across the US, Europe, China and Malaysia, this paper goes beyond the binary debate of either the 'failure' or 'success' of GVCs to show when and under what conditions states interacted with GVCs to produce mixed outcomes in provisioning countries with PPEs. We identify interactions between the type of state intervention and two key structural features of GVCs - geographic distribution of production and technological attributes of the product. Conceptually, the paper demonstrates the mutual constraints of states and GVCs, and highlights structural factors involved in the relationship. Looking to the future of GVCs, we caution against wholesale declarations that GVCs should be abandoned or maintained, instead concluding that paying attention to GVC structure, states and their interactions are crucial.

8.
Biochem J ; 474(3): 333-355, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108584

RESUMO

Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.


Assuntos
Doença de Alzheimer/genética , Astrócitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
J Biomech Eng ; 140(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801077

RESUMO

The determination of the elastic modulus of bone is important in studying the response of bone to loading and is determined using a destructive three-point bending method. Reference point indentation (RPI), with one cycle of indentation, offers a nondestructive alternative to determine the elastic modulus. While the elastic modulus could be determined using a nondestructive procedure for ex vivo experiments, for in vivo testing, the three-point bending technique may not be practical and hence RPI is viewed as a potential alternative and explored in this study. Using the RPI measurements, total indentation distance (TID), creep indentation distance, indentation force, and the unloading slope, we have developed a numerical analysis procedure using the Oliver-Pharr (O/P) method to estimate the indentation elastic modulus. Two methods were used to determine the area function: (1) Oliver-Pharr (O/P-based on a numerical procedure) and (2) geometric (based on the calculation of the projected area of indentation). The indentation moduli of polymethyl methacrylate (PMMA) calculated by the O/P (3.49-3.68 GPa) and geometric (3.33-3.49 GPa) methods were similar to values in literature (3.5-4 GPa). In a study using femurs from C57Bl/6 mice of different ages and genders, the three-point bending modulus was lower than the indentation modulus. In femurs from 4 to 5 months old TOPGAL mice, we found that the indentation modulus from the geometric (5.61 ± 1.25 GPa) and O/P (5.53 ± 1.27 GPa) methods was higher than the three-point bending modulus (5.28 ± 0.34 GPa). In females, the indentation modulus from the geometric (7.45 ± 0.86 GPa) and O/P (7.46 ± 0.92 GPa) methods was also higher than the three-point bending modulus (7.33 ± 1.13 GPa). We can conclude from this study that the RPI determined values are relatively close to three-point bending values.


Assuntos
Módulo de Elasticidade , Fêmur , Teste de Materiais/métodos , Animais , Fenômenos Biomecânicos , Feminino , Heterozigoto , Masculino , Teste de Materiais/instrumentação , Camundongos , Camundongos Endogâmicos C57BL
10.
J Biol Chem ; 291(7): 3411-22, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26677217

RESUMO

Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.


Assuntos
Antivirais/farmacologia , Vírus Bunyamwera/efeitos dos fármacos , Infecções por Bunyaviridae/tratamento farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Integração Viral/efeitos dos fármacos , Aedes , Animais , Vírus Bunyamwera/crescimento & desenvolvimento , Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mesocricetus , Nairovirus/efeitos dos fármacos , Nairovirus/crescimento & desenvolvimento , Nairovirus/fisiologia , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/crescimento & desenvolvimento , Orthobunyavirus/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Vero
11.
J Cell Sci ; 128(2): 225-31, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413349

RESUMO

Factor inhibiting HIF (FIH, also known as HIF1AN) is an oxygen-dependent asparaginyl hydroxylase that regulates the hypoxia-inducible factors (HIFs). Several proteins containing ankyrin repeat domains (ARDs) have been characterised as substrates of FIH, although there is little evidence for a functional consequence of hydroxylation on these substrates. This study demonstrates that the transient receptor potential vanilloid 3 (TRPV3) channel is hydroxylated by FIH on asparagine 242 within the cytoplasmic ARD. Hypoxia, FIH inhibitors and mutation of asparagine 242 all potentiated TRPV3-mediated current, without altering TRPV3 protein levels, indicating that oxygen-dependent hydroxylation inhibits TRPV3 activity. This novel mechanism of channel regulation by oxygen-dependent asparaginyl hydroxylation is likely to extend to other ion channels.


Assuntos
Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Repetição de Anquirina/genética , Células HEK293 , Humanos , Hidroxilação/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/genética , Mutação , Oxigênio/metabolismo , Ligação Proteica , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Canais de Cátion TRPV/genética
12.
J Neurosci ; 34(32): 10603-15, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100594

RESUMO

α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Dopamina/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Neurônios/citologia , alfa-Sinucleína/farmacologia , Compostos de Anilina/metabolismo , Animais , Anticorpos/farmacologia , Canais de Cálcio Tipo N/imunologia , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Cervical Superior/citologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Sinaptofisina/metabolismo , Xantenos/metabolismo
13.
J Biol Chem ; 289(23): 16421-9, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24719320

RESUMO

Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na(+) current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognized CO-sensitive intracellular signaling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of NO formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to DTT immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, l-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na(+) current (which can lead to Brugada syndrome-like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation, and is dependent on channel redox state.


Assuntos
Monóxido de Carbono/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Células HEK293 , Humanos , Oxirredução
14.
Pflugers Arch ; 467(2): 415-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24744106

RESUMO

Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca(2+) channels in HEK293 cells raised basal [Ca(2+)]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca(2+)]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca(2+) currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca(2+) channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Monóxido de Carbono/farmacologia , Proliferação de Células , Heme Oxigenase-1/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células HEK293 , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Ratos
15.
FASEB J ; 28(12): 5376-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25183670

RESUMO

The importance of H2S as a physiological signaling molecule continues to develop, and ion channels are emerging as a major family of target proteins through which H2S exerts many actions. The purpose of the present study was to investigate its effects on T-type Ca(2+) channels. Using patch-clamp electrophysiology, we demonstrate that the H2S donor, NaHS (10 µM-1 mM) selectively inhibits Cav3.2 T-type channels heterologously expressed in HEK293 cells, whereas Cav3.1 and Cav3.3 channels were unaffected. The sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn(2+) to this channel. Chelation of Zn(2+) with N,N,N',N'-tetra-2-picolylethylenediamine prevented channel inhibition by H2S and also reversed H2S inhibition when applied after H2S exposure, suggesting that H2S may act via increasing the affinity of the channel for extracellular Zn(2+) binding. Inhibition of native T-type channels in 3 cell lines correlated with expression of Cav3.2 and not Cav3.1 channels. Notably, H2S also inhibited native T-type (primarily Cav3.2) channels in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H2S regulation, the T-type Ca(2+) channel Cav3.2, and suggest that such modulation cannot account for the pronociceptive effects of this gasotransmitter.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Animais , Western Blotting , Linhagem Celular , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Adv Exp Med Biol ; 860: 343-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303499

RESUMO

Hypoxic/ischemic episodes can trigger oxidative stress-mediated loss of central neurons via apoptosis, and low pO2 is also a feature of the tumor microenvironment, where cancer cells are particularly resistant to apoptosis. In the CNS, ischemic insult increases expression of the CO-generating enzyme heme oxygenase-1 (HO-1), which is commonly constitutively active in cancer cells. It has been proposed that apoptosis can be regulated by the trafficking and activity of K(+) channels, particularly Kv2.1. We have explored the idea that HO-1 may influence apoptosis via regulation of Kv2.1. Overexpression of Kv2.1 in HEK293 cells increased their vulnerability to oxidant-induced apoptosis. CO (applied as the donor CORM-2) protected cells against apoptosis and inhibited Kv2.1 channels. Similarly in hippocampal neurones, CO selectively inhibited Kv2.1 and protected neurones against oxidant-induced apoptosis. In medulloblastoma sections we identified constitutive expression of HO-1 and Kv2.1, and in the medulloblastoma-derived cell line DAOY, hypoxic HO-1 induction or exposure to CO protected cells against apoptosis, and also selectively inhibited Kv2.1 channels expressed in these cells. These studies are consistent with a central role for Kv2.1 in apoptosis in both central neurones and cancer cells. They also suggest that HO-1 expression can strongly influence apoptosis via CO-mediated regulation of Kv2.1 activity.


Assuntos
Apoptose , Monóxido de Carbono/fisiologia , Heme Oxigenase-1/fisiologia , Canais de Potássio Shab/fisiologia , Animais , Citoproteção , Células HEK293 , Humanos , Meduloblastoma/patologia , Ratos , Ratos Wistar , Canais de Potássio Shab/antagonistas & inibidores
17.
Adv Exp Med Biol ; 860: 361-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303501

RESUMO

GAL-021 and GAL-160 are alkylamino triazine analogues, which stimulate ventilation in rodents, non-human primates and (for GAL-021) in humans. To probe the site and mechanism of action of GAL-021 and GAL-160 we utilized spirometry in urethane anesthetized rats subjected to acute bilateral carotid sinus nerve transection (CSNTX) or sham surgery. In addition, using patch clamp electrophysiology we evaluated ionic currents in carotid body glomus cells isolated from neonatal rats. Acute CSNTX markedly attenuated and in some instances abolished the ventilatory stimulant effects of GAL-021 and GAL-160 (0.3 mg/kg IV), suggesting the carotid body is a/the major locus of action. Electrophysiology studies, in isolated Type I cells, established that GAL-021 (30 µM) and GAL-160 (30 µM) inhibited the BK(Ca) current without affecting the delayed rectifier K(+), leak K(+) or inward Ca(2+) currents. At a higher concentration of GAL-160 (100 µM), inhibition of the delayed rectifier K(+) current and leak K(+) current were observed. These data are consistent with the concept that GAL-021 and GAL-160 influence breathing control by acting as peripheral chemoreceptor modulators predominantly by inhibiting BK(Ca) mediated currents in glomus cells of the carotid body.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Apneia do Sono Tipo Central/tratamento farmacológico , Apneia Obstrutiva do Sono/tratamento farmacológico , Triazinas/uso terapêutico , Animais , Corpo Carotídeo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Apneia do Sono Tipo Central/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Triazinas/farmacologia
18.
Adv Exp Med Biol ; 860: 353-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303500

RESUMO

T-type Ca(2+) channels are a distinct family of low voltage-activated Ca(2+) channels which serve many roles in different tissues. Several studies have implicated them, for example, in the adaptive responses to chronic hypoxia in the cardiovascular and endocrine systems. Hydrogen sulfide (H(2)S) was more recently discovered as an important signalling molecule involved in many functions, including O(2) sensing. Since ion channels are emerging as an important family of target proteins for modulation by H(2)S, and both T-type Ca(2+) channels and H(2)S are involved in cellular responses to hypoxia, we have investigated whether recombinant and native T-type Ca(2+) channels are a target for modulation by H(2)S. Using patch-clamp electrophysiology, we demonstrate that the H(2)S donor, NaHS, selectively inhibits Cav3.2 T-type Ca(2+) channels heterologously expressed in HEK293 cells, whilst Cav3.1 and Cav3.3 channels were unaffected. Sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn(2+) to this channel. Chelation of Zn(2+) using TPEN prevented channel inhibition by H(2)S. H2S also selectively inhibited native T-type channels (primarily Cav3.2) in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H(2)S regulation, the T-type Ca(2+) channel Cav3.2. Results have important implications for the proposed pro-nociceptive effects of this gasotransmitter. Implications for the control of cellular responses to hypoxia await further study.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Etilenodiaminas/farmacologia , Células HEK293 , Humanos
19.
Adv Exp Med Biol ; 860: 291-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303493

RESUMO

T-type Ca(2+) channels regulate proliferation in a number of tissue types, including vascular smooth muscle and various cancers. In such tissues, up-regulation of the inducible enzyme heme oxygenase-1 (HO-1) is often observed, and hypoxia is a key factor in its induction. HO-1 degrades heme to generate carbon monoxide (CO) along with Fe(2+) and biliverdin. Since CO is increasingly recognized as a regulator of ion channels (Peers et al. 2015), we have explored the possibility that it may regulate proliferation via modulation of T-type Ca(2+) channels.Whole-cell patch-clamp recordings revealed that CO (applied as the dissolved gas or via CORM donors) inhibited all 3 isoforms of T-type Ca(2+) channels (Cav3.1-3.3) when expressed in HEK293 cells with similar IC(50) values, and induction of HO-1 expression also suppressed T-type currents (Boycott et al. 2013). CO/HO-1 induction also suppressed the elevated basal [Ca(2+) ](i) in cells expressing these channels and reduced their proliferative rate to levels seen in non-transfected control cells (Duckles et al. 2015).Proliferation of vascular smooth muscle cells (both A7r5 and human saphenous vein cells) was also suppressed either by T-type Ca(2+) channel inhibitors (mibefradil and NNC 55-0396), HO-1 induction or application of CO. Effects of these blockers and CO were non additive. Although L-type Ca(2+) channels were also sensitive to CO (Scragg et al. 2008), they did not influence proliferation. Our data suggest that HO-1 acts to control proliferation via CO modulation of T-type Ca(2+) channels.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Monóxido de Carbono/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo T/análise , Proliferação de Células , Células HEK293 , Heme Oxigenase-1/fisiologia , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia
20.
J Biol Chem ; 288(34): 24753-63, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23857585

RESUMO

Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K(+) channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K(+) homeostasis.


Assuntos
Apoptose , Hepacivirus/metabolismo , Hepatite C/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/genética , Humanos , Transporte de Íons/genética , MAP Quinase Quinase Quinases/genética , Potássio/metabolismo , Canais de Potássio Shab/biossíntese , Canais de Potássio Shab/genética , Regulação para Cima/genética , Proteínas não Estruturais Virais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Domínios de Homologia de src , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA