Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 286(36): 31064-71, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21757754

RESUMO

Estrogen receptor α (ERα) regulates gene transcription via "genomic" (binding directly or indirectly, typically via Sp1 or AP-1 sites, to target genes) and/or "nongenomic" (signaling) mechanisms. ERα activation by estrogen up-regulates the murine Ca(2+)-activated K(+) channel α subunit gene (mSlo1) via genomic mechanisms. Here, we investigated whether ERα also drives transcription of the human (hSlo1) gene. Consistent with this view, estrogen increased hSlo1 transcript levels in primary human smooth muscle cells. Promoter studies revealed that estrogen/hERα-mediated hSlo1 transcription was nearly 6-fold more efficient than for mSlo1 (EC(50), 0.07 versus 0.4 nM). Unlike the genomic transcriptional mechanism employed by mSlo1, hSlo1 exhibits a nongenomic hERα-mediated regulatory mechanism. This is supported by the following: 1) efficient hSlo1 transcription after disruption of the DNA-binding domain of hERα or knockdown of Sp1, and 2) lack of AP-1 sites in the hSlo1 promoter. Three nongenomic signaling pathways were explored: Src, Rho, and PI3K. Inhibition of Src with 10 µM PP2, and reported downstream ERK with 25 µM PD98059 did not prevent estrogen action but caused an increase in hSlo1 basal transcription; conversely, constitutively active c-Src (Y527F) decreased hSlo1 basal transcription even preventing its estrogen/hERα-mediated transcriptional activation. Rho inhibition by coexpressed Clostridium botulinum C3 transferase did not alter estrogen action. In contrast, inhibition of PI3K activity with 10 µM LY294002 decreased estrogen-stimulated hSlo1 transcription by ∼40%. These results indicate that the nongenomic PI3K signaling pathway plays a role in estrogen/hERα-stimulated hSlo1 gene expression; whereas c-Src activity leads to hSlo1 gene tonic repression independently of estrogen, likely through ERK activation.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Proteínas Tirosina Quinases/metabolismo , Transcrição Gênica , Adolescente , Proteína Tirosina Quinase CSK , Células Cultivadas , Criança , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Humanos , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Fosfatidilinositol 3-Quinases , Quinases da Família src
2.
Structure ; 16(10): 1532-43, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18940608

RESUMO

G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward Galpha13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP*AlF (transition state) and GTPgammaS (Michaelis complex). PRG-rgRGS interacts extensively with the helical domain and the effector-binding sites on Galpha13 through contacts that are largely conserved in all three nucleotide-bound states, although PRG-rgRGS has highest affinity to the Michaelis complex. An acidic motif in the N terminus of PRG-rgRGS occupies the GAP binding site of Galpha13 and is flexible in the GDP*AlF complex but well ordered in the GTPgammaS complex. Replacement of key residues in this motif with their counterparts in p115RhoGEF confers GAP activity.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas RGS/química , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética
3.
Gene Expr Patterns ; 9(5): 255-65, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19393343

RESUMO

Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor beta (TGFbeta) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteínas de Transporte/genética , Embrião de Mamíferos/embriologia , Feminino , Perfilação da Expressão Gênica , Coração/embriologia , Hibridização In Situ , Fígado/embriologia , Pulmão/embriologia , Camundongos , Organogênese/genética , Gravidez , Fatores de Tempo
4.
Adv Protein Chem ; 74: 189-228, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17854659

RESUMO

Monomeric Rho GTPases regulate cellular dynamics through remodeling of the cytoskeleton, modulation of immediate signaling pathways, and longer-term regulation of gene transcription. One family of guanine nucleotide exchange factors for Rho proteins (RhoGEFs) provides a direct pathway for regulation of RhoA by cell surface receptors coupled to heterotrimeric G proteins. Some of these RhoGEFs also contain RGS domains that can attenuate signaling by the G(12) and G(13) proteins. The regulation provided by these RhoGEFs is defined by their selective regulation by specific G proteins, phosphorylation by kinases, and potential localization with signaling partners. Evidence of their physiological importance is derived from gene knockouts in Drosophila and mice. Current understanding of the basic regulatory mechanisms of these RhoGEFs is discussed. An overview of identified interactions with other signaling proteins suggests the growing spectrum of their involvement in numerous signaling pathways.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA