Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 723-740.e21, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508230

RESUMO

Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.


Assuntos
Encéfalo/embriologia , Evolução Molecular , Feto/embriologia , Genoma , Organogênese/genética , Animais , Sequência de Bases , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Macaca mulatta , Camundongos , Especificidade da Espécie , Sintenia/genética , Fatores de Transcrição/metabolismo
2.
Genome Res ; 33(3): 386-400, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894325

RESUMO

Topologically associating domains (TADs) have emerged as basic structural and functional units of genome organization and have been determined by many computational methods from Hi-C contact maps. However, the TADs obtained by different methods vary greatly, which makes the accurate determination of TADs a challenging issue and hinders subsequent biological analyses about their organization and functions. Obvious inconsistencies among the TADs identified by different methods indeed make the statistical and biological properties of TADs overly depend on the chosen method rather than on the data. To this end, we use the consensus structural information captured by these methods to define the TAD separation landscape for decoding the consensus domain organization of the 3D genome. We show that the TAD separation landscape could be used to compare domain boundaries across multiple cell types for discovering conserved and divergent topological structures, decipher three types of boundary regions with diverse biological features, and identify consensus TADs (ConsTADs). We illustrate that these analyses could deepen our understanding of the relationships between the topological domains and chromatin states, gene expression, and DNA replication timing.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Consenso , Cromatina/genética , Genoma , Cromossomos
3.
Adv Sci (Weinh) ; : e2406364, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264290

RESUMO

Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single-cell Hi-C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell-type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single-cell Hi-C data and the cell type signature from RNA FISH data to obtain a high-fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single-cell level in the mouse brain. ImputeHiFI improves the recognition of cell-type-specific loops in three high-resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions.

4.
J Mol Cell Biol ; 15(1)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708167

RESUMO

Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells. However, high sequencing cost impedes the generation of biological Hi-C data with high sequencing depths and multiple replicates for downstream analysis. Here, we developed a single-cell Hi-C simulator (scHi-CSim) that generates high-fidelity data for benchmarking. scHi-CSim merges neighboring cells to overcome the sparseness of data, samples interactions in distance-stratified chromosomes to maintain the heterogeneity of single cells, and estimates the empirical distribution of restriction fragments to generate simulated data. We demonstrated that scHi-CSim can generate high-fidelity data by comparing the performance of single-cell clustering and detection of chromosomal high-order structures with raw data. Furthermore, scHi-CSim is flexible to change sequencing depth and the number of simulated replicates. We showed that increasing sequencing depth could improve the accuracy of detecting topologically associating domains. We also used scHi-CSim to generate a series of simulated datasets with different sequencing depths to benchmark scHi-C clustering methods.


Assuntos
Benchmarking , Cromatina , Cromatina/genética , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA