Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Br Poult Sci ; 60(3): 187-194, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30686025

RESUMO

1. Two candidate genes, namely, Gonadotropin releasing hormone I (GnRHI) and Gonadotropin releasing hormone II (GnRHII) play pivotal roles in ovulation and egg production in chicken. The objective of this study was to explore polymorphism in these genes and to estimate the effects of polymorphism of these two genes on egg production and egg quality traits in White Leghorn laying hens. 2. Single strand conformation polymorphism followed by sequencing was performed to detect polymorphism in these genes. 3. The coding regions of the GnRHI and GnRHII genes were found to be polymorphic. In the GnRH1 gene, 12 haplotypes were determined, of which the h1 haplotype was predominant and the h5, h9 and h11 haplotypes were the least frequent ones. In the GnRHII gene, eight haplotypes were found, of which the h1 haplotype was the most frequent and the h6 was the least frequent haplotype in the White Leghorn population. 4. The haplogroups of GnRHI had a significant effect on body weight and egg production up to 64 weeks of age, yolk content, Haugh units and egg shell parameters. The h1h2 haplogroup of the GnRHI gene showed the highest egg production, with 211.0 ± 24.3 eggs up to 64 weeks of age, while the highest yolk content and Haugh unit was found in h3h10 haplogrouped birds. The haplogroups of GnRHII had a significant effect on age at sexual maturity (ASM) where the shortest ASM was found in the h1h4 birds (147.3 ± 5.9 d) and the longest ASM was observed in the h1h3 birds (160.6 ± 23.4 d). 5. It was concluded that GnRHI and GnRHII genes are polymorphic and have a significant effect on body weight, egg production and egg quality traits in White Leghorn laying hens.


Assuntos
Proteínas Aviárias/genética , Galinhas/fisiologia , Ovos/análise , Hormônio Liberador de Gonadotropina/análogos & derivados , Óvulo/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Proteínas Aviárias/metabolismo , Galinhas/genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Fases de Leitura Aberta , Polimorfismo Conformacional de Fita Simples , Ácido Pirrolidonocarboxílico/metabolismo , Análise de Sequência de DNA/veterinária
2.
Front Genet ; 14: 1083976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621706

RESUMO

Background: Native chickens are dispersed in a wide geographical range and have hereditary assets that are kept by farmers for various purposes. Mitochondrial DNA (mtDNA) is a widely utilized marker in molecular studies because of its quick advancement, matrilineal legacy, and simple molecular structure. Method and Results: We performed NGS sequencing to investigate mitochondrial genomes and to evaluate the hereditary connections, diversity, and measure of gene stream estimation in Indian native chicken breeds and Red Jungle fowl. The chicken breeds were genotyped using the D-loop region and 23 haplotypes were identified. When compared to Indian native breeds, more haplotypes were identified in the NADH dehydrogenase subunits, Cytochrome c oxidase, Cytochrome b, ATP synthase subunit 6, and Ribosomal RNA genes. The phylogenetic examination indicated that the analyzed chicken breeds were divided into six significant clades, namely A, B, C, D, E, and F, of which the F clade indicated the domestication of chicken breeds in India. Additionally, our work affirmed that the Indian Red Jungle Fowl is the origin for both reference Red Jungle Fowl as well as all Indian breeds, which is reflected in the dendrogram as well as network analysis based on the whole mtDNA and D-loop region. Indian Red Jungle Fowl is distributed as an outgroup, suggesting that this ancestry was reciprocally monophyletic. Conclusion: The mtDNA sequences of Indian native chickens provided novel insights into adaptation mechanisms and the significance of important mtDNA variations in understanding the maternal lineages of native birds.

3.
Bioresour Technol ; 97(16): 2131-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16314089

RESUMO

The aim of this study was to achieve maximum decolorization of molasses spent wash (MSW) in absence of any additional carbon or nitrogen source using soil as inoculum. Soil samples were collected from the MSW disposal site. Colored soil samples exhibited higher pH, sugar and protein as compare to less colored samples. A decolorization of 69% was obtained using 10% (w/v) soil and 12.5% (v/v) MSW after 7 days incubation. Optimized parameters including days--6 days, pH--6, MSW--12.5% and soil concentration--40%, were obtained for maximum decolorization. A decolorization of 81% was achieved using 10% soil and 12.5% MSW after 18 days incubation in absence of any media supplement. Nearly 12% reduction in decolorization activity of the soil sample was observed over a period of 12 months when stored at 6 degrees C. It could be concluded that the decolorization of MSW might be achieved using soil as inoculum without addition of chemical amendments.


Assuntos
Bactérias Anaeróbias/metabolismo , Melaço , Solo/análise , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Carboidratos/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA