Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Med Chem Lett ; 11(10): 1837-1842, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062161

RESUMO

Overexpression of cyclooxygenase-1 (COX-1) is associated with the initiation and progression of ovarian cancer, and targeted imaging of COX-1 is a promising strategy for early detection of this disease. We report the discovery of N-[(5-carboxy-X-rhodaminyl)but-4-yl]-3-(1-(4-methoxyphenyl)-5-(p-tolyl)-1H-pyrazol-3-yl)propenamide (CMP) as the first COX-1-targeted optical agent for imaging of ovarian cancer. CMP exhibits light emission at 604 nm (λmax), thereby minimizing tissue autofluorescence interference. In both purified enzyme and COX-1-expressing human ovarian adenocarcinoma (OVCAR-3) cells, CMP inhibits COX-1 at low nanomolar potencies (IC50 = 94 and 44 nM, respectively). CMP's selective binding to COX-1 in OVCAR-3 cells was visualized microscopically as intense intracellular fluorescence. In vivo optical imaging of xenografts in athymic nude mice revealed COX-1-dependent accumulation of CMP in COX-1-expressing mouse ovarian surface epithelial carcinoma (ID8-NGL) and OVCAR-3 cells. These results establish proof-of-principle for the feasibility of targeting COX-1 in the development of new imaging and therapeutic strategies for ovarian cancer.

2.
ACS Omega ; 4(5): 9251-9261, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31172046

RESUMO

In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.

3.
ACS Chem Biol ; 11(11): 3052-3060, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27588346

RESUMO

Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anticancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2's allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2 but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Cinética , Camundongos , Camundongos Nus
4.
J Biomed Opt ; 21(9): 90503, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27626899

RESUMO

Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated

Assuntos
Neovascularização de Coroide/diagnóstico por imagem , Ciclo-Oxigenase 2/análise , Indóis/química , Imagem Óptica/métodos , Rodaminas/química , Animais , Neovascularização de Coroide/metabolismo , Ciclo-Oxigenase 2/metabolismo , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador , Indóis/análise , Camundongos , Rodaminas/análise
5.
J Biomed Opt ; 20(5): 50502, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25970082

RESUMO

Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancercell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116)or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacocinética , Ciclo-Oxigenase 2/metabolismo , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Feminino , Aumento da Imagem/métodos , Raios Infravermelhos , Camundongos , Camundongos Nus , Técnicas de Diagnóstico Molecular/métodos , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
ACS Med Chem Lett ; 5(4): 446-50, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900856

RESUMO

Fluorocoxib A is an effective COX-2-targeted optical imaging agent, used for in vivo detection of inflammatory tissues and premalignant and malignant tumors that express elevated levels of COX-2 (Uddin et al. Cancer Res. 2010, 70, 3618-3627). In an effort to discover novel optical probes for COX-2, a trifluoromethyl analogue of fluorocoxib A (CF3-fluorocoxib A) was synthesized and evaluated for its ability to inhibit COX-2 in vitro purified enzyme and human cancer cell lines. Kinetic analysis revealed that CF3-fluorocoxib A is a slow, tight binding inhibitor of COX-2 that exhibits low nanomolar inhibitory potency. While CF3-fluorocoxib A and fluorocoxib A are similar in structure, CF3-fluorocoxib A shows improved potency in inhibition of wtCOX-2 and with a series of site-directed COX-2 mutants. After intraperitoneal injection, selective uptake of CF3-fluorocoxib A is detected in inflamed mouse paws compared to noninflamed contralateral paws by optical imaging, and uptake is blocked by pretreatment with the COX-2 inhibitor, celecoxib. Selective uptake is also detected in the COX-2-positive human tumor xenografts (1483 HNSCC) as compared with the COX-2-negative tumor xenografts (HCT116) in an in vivo nude mouse tumor model. These in vitro and in vivo studies suggest that binding to COX-2 is the major determinant of uptake of CF3-fluorocoxib A into the inflamed tissues and tumor xenografts. Thus, this new COX-2-targeted imaging probe should find utility in the detection and evaluation of COX-2 status in naturally occurring malignancies.

7.
ACS Med Chem Lett ; 5(11): 1254-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25408841

RESUMO

We report the design and synthesis of fluorine-containing cyclooxygenase-1 (COX-1)-selective inhibitors to serve as prototypes for the development of a COX-1-targeted imaging agent. Deletion of the SO2CH3 group of rofecoxib switches the compound from a COX-2- to a COX-1-selective inhibitor, providing a 3,4-diarylfuran-2(5H)-one scaffold for structure-activity relationship studies of COX-1 inhibition. A wide range of fluorine-containing 3,4-diarylfuran-2(5H)-ones were designed, synthesized, and tested for their ability to selectively inhibit COX-1 in purified protein and human cancer cell assays. Compounds containing a fluoro-substituent on the C-3 phenyl ring and a methoxy-substituent on the C-4 phenyl ring of the 3,4-diarylfuran-2(5H)-one scaffold were the best COX-1-selective agents of those evaluated, exhibiting IC50s in the submicromolar range. These compounds provide the foundation for development of an agent to facilitate radiologic imaging of ovarian cancer expressing elevated levels of COX-1.

8.
Eur J Med Chem ; 80: 562-568, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24832612

RESUMO

Cyclooxygenase-1 (COX-1), but not COX-2, is expressed at high levels in the early stages of human epithelial ovarian cancer where it seems to play a key role in cancer onset and progression. As a consequence, COX-1 is an ideal biomarker for early ovarian cancer detection. A series of novel fluorinated COX-1-targeted imaging agents derived from P6 was developed by using a highly selective COX-1 inhibitor as a lead compound. Among these new compounds, designed by structural modification of P6, 3-(5-chlorofuran-2-yl)-5-(fluoromethyl)-4-phenylisoxazole ([(18/19)F]-P6) is the most promising derivative [IC50 = 2.0 µM (purified oCOX-1) and 1.37 µM (hOVCAR-3 cell COX-1)]. Its tosylate precursor was also prepared and, a method for radio[(18)F]chemistry was developed and optimized. The radiochemistry was carried out using a carrier-free K(18)F/Kryptofix 2.2.2 complex, that afforded [(18)F]-P6 in good radiochemical yield (18%) and high purity (>95%). In vivo PET/CT imaging data showed that the radiotracer [(18)F]-P6 was selectively taken up by COX-1-expressing ovarian carcinoma (OVCAR 3) tumor xenografts as compared with the normal leg muscle. Our results suggest that [(18)F]-P6 might be an useful radiotracer in preclinical and clinical settings for in vivo PET-CT imaging of tissues that express elevated levels of COX-1.


Assuntos
Biomarcadores Tumorais/metabolismo , Ciclo-Oxigenase 1/metabolismo , Radioisótopos de Flúor , Furanos , Isoxazóis , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Furanos/química , Furanos/farmacologia , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Camundongos , Neoplasias Ovarianas/patologia , Traçadores Radioativos , Radioquímica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA