Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Environ Res ; 154: 104870, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056707

RESUMO

Glutathione (GSH) is a major cellular antioxidant molecule participating in several biological processes, including immune function. In this study, we investigated the importance of GSH to oysters Crassostrea gigas immune response. Oysters were treated with the GSH-synthesis inhibitor buthionine sulfoximine (BSO), and the function of immune cells and mortality were evaluated after a bacterial challenge with different Vibrio species. BSO caused a moderate decrease (20-40%) in GSH levels in the gills, digestive gland, and hemocytes. As expected, lower GSH decreased survival to peroxide exposure. Hemocyte function was preserved after BSO treatment, however, oysters became more susceptible to challenges with Vibrio anguillarum, V. alginolyticus, or V. harveyi, but not with V. parahaemolyticus and V. vulnificus, indicating a species-specific vulnerability. Our study indicates that in natural habitats or in mariculture farms, disturbances in GSH metabolism may pre-dispose oysters to bacterial infection, decreasing survival.


Assuntos
Crassostrea , Vibrio , Animais , Crassostrea/metabolismo , Crassostrea/microbiologia , Brânquias/metabolismo , Brânquias/microbiologia , Glutationa/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Vibrio/fisiologia
2.
Mar Environ Res ; 130: 142-149, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28764960

RESUMO

Nrf2 is a well-known transcription factor controlling a number of antioxidant defense-related genes, which is understudied in bivalves. In this study, oysters Crassostrea gigas were exposed for 24, 48 and 96 h to 10 or 30 µM tert-butylhydroquinone (tBHQ), a classic Nrf2 activator. At 96 h, a clear induction of GSH-related antioxidant defenses was observed in gills of tBHQ-exposed animals, including GSH, glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). Unexpectedly, the activities of GST, GPx and GR were significantly decreased 24 h after tBHQ treatment, suggesting a possible inhibition, which was supported by in vitro experiments. GR mRNA (24 h) and protein levels (24 and 96 h) were increased by tBHQ treatment, confirming its induction, possibly by the Nrf2 pathway. The conserved domains at C. gigas Keap1 and Nrf2 proteins and the clear induction of GSH-related antioxidant defenses by tBHQ, a classical Nrf2 inducer, support the idea of a functional Nrf2/Keap1 pathway in bivalves. tBHQ also proved to be a tool to explore redox regulatory mechanisms in bivalves.


Assuntos
Crassostrea/fisiologia , Hidroquinonas/farmacologia , Animais , Antioxidantes , Glutationa , Fator 2 Relacionado a NF-E2
3.
Artigo em Inglês | MEDLINE | ID: mdl-28216009

RESUMO

Analysis of the Pacific oyster Crassostrea gigas annotated genome revealed genes with conserved sequences belonging to typical cap 'n' collar Nrf2 domain, a major player in antioxidant protection, and domains belonging to Nrf2 cytoplasmic repressor (Keap1), but little is known about Nrf2/Keap1 induction in bivalves. C. gigas were exposed to waterborne 10 and 30µM curcumin, a known inducer of the mammalian Nrf2. Curcumin disappeared from the seawater after 10h, and accumulated in the gills (10h) and digestive gland (10-96h). A clear induction of glutathione (GSH)-related antioxidant defenses was observed at 96h in the gills of curcumin exposed animals (10 and 30µM), including GSH levels, and the activity of glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). This response was completely absent in the digestive gland, in line with the idea that bivalve gills act as a major site for antioxidant protection under acute exposure. The relative mRNA levels coding glutamate-cysteine ligase, GR, GPx2 and GSTpi were clearly induced by curcumin treatment (30µM, 24h). Curcumin pre-treatment for 96h increased oyster resistance to cumene hydroperoxide, but neither Nrf2 nor Keap1 genes were modulated by curcumin. However, the conserved sequences belonging to typical Nrf2 and Keap1 domains, and the notorious induction of antioxidant defense-related genes known to be controlled by Nrf2 in mammals, indicates a functional Nrf2/Keap1 pathway in bivalves, and curcumin seems to be a new tool to investigate the antioxidant response in bivalves.


Assuntos
Antioxidantes/metabolismo , Bivalves/metabolismo , Crassostrea/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Crassostrea/genética , Curcumina/metabolismo , Curcumina/farmacologia , Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/classificação , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/classificação , Fator 2 Relacionado a NF-E2/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Regulação para Cima
4.
Aquat Toxicol ; 108: 85-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036013

RESUMO

Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 µM for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH-CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH-CDNB conjugates.


Assuntos
Antioxidantes/metabolismo , Crassostrea/efeitos dos fármacos , Dinitroclorobenzeno/toxicidade , Vitamina K 3/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Crassostrea/enzimologia , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Hemócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Sulfidrila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA