Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 53(42): 11253-6, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25168789

RESUMO

Sessile marine mussels must "dry" underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction through surface-water diffusivity, different mussel foot proteins were found to have different abilities to evict hydration layers from surfaces-a necessary step for adsorption and adhesion. It was anticipated that DOPA would mediate dehydration owing to its efficacy in bioinspired wet adhesion. Instead, hydrophobic side chains were found to be a critical component for protein-surface intimacy. This direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces offers guidance for the engineering of wet adhesives and coatings.


Assuntos
Adesivos/química , Bivalves/química , Proteínas/química , Adsorção , Animais , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
2.
Biochemistry ; 51(33): 6511-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22873939

RESUMO

Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4-dihydroxyphenylalanine (Dopa) (~30 mol %) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using the surface forces apparatus, we show that on mica surfaces Mefp-5 achieves an adhesion energy approaching E(ad) = ~-14 mJ/m(2). This exceeds the adhesion energy of another interfacial protein, Mefp-3, by a factor of 4-5 and is greater than the adhesion between highly oriented monolayers of biotin and streptavidin. The adhesion to mica is notable for its dependence on Dopa, which is most stable under reducing conditions and acidic pH. Mefp-5 also exhibits strong protein-protein interactions with itself as well as with Mefp-3 from M. edulis.


Assuntos
Adesivos/química , Proteínas/química , Silicatos de Alumínio , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Mytilus edulis/química , Oxirredução , Ligação Proteica
3.
J R Soc Interface ; 12(113): 20150827, 2015 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-26631333

RESUMO

Marine mussels of the genus Mytilus live in the hostile intertidal zone, attached to rocks, bio-fouled surfaces and each other via collagen-rich threads ending in adhesive pads, the plaques. Plaques adhere in salty, alkaline seawater, withstanding waves and tidal currents. Each plaque requires a force of several newtons to detach. Although the molecular composition of the plaques has been well studied, a complete understanding of supra-molecular plaque architecture and its role in maintaining adhesive strength remains elusive. Here, electron microscopy and neutron scattering studies of plaques harvested from Mytilus californianus and Mytilus galloprovincialis reveal a complex network structure reminiscent of structural foams. Two characteristic length scales are observed characterizing a dense meshwork (approx. 100 nm) with large interpenetrating pores (approx. 1 µm). The network withstands chemical denaturation, indicating significant cross-linking. Plaques formed at lower temperatures have finer network struts, from which we hypothesize a kinetically controlled formation mechanism. When mussels are induced to create plaques, the resulting structure lacks a well-defined network architecture, showcasing the importance of processing over self-assembly. Together, these new data provide essential insight into plaque structure and formation and set the foundation to understand the role of plaque structure in stress distribution and toughening in natural and biomimetic materials.


Assuntos
Estruturas Animais/ultraestrutura , Mytilus/ultraestrutura , Estruturas Animais/química , Animais , Mytilus/química
4.
PLoS One ; 9(10): e108869, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303409

RESUMO

The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼ 30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment.


Assuntos
Adesivos/química , Ácidos Borônicos/química , Di-Hidroxifenilalanina/química , Moluscos/química , Proteínas/química , Silicatos de Alumínio/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA