Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 98(3): 435-441, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942283

RESUMO

Human genome and exome sequencing are powerful research tools that can generate secondary findings beyond the scope of the research. Most secondary genomic findings are of low importance, but some (for a current estimate of 1%-3% of individuals) confer high risk of a serious disease that could be mitigated by timely medical intervention. The impact and scope of secondary findings in genome and exome sequencing will only increase in the future. There is considerable agreement that high-impact findings should be returned to participants, but many researchers performing genomic research studies do not have the background, skills, or resources to identify, verify, interpret, and return such variants. Here, we introduce a proposal for the formation of a secondary-genomic-findings service (SGFS) that would support researchers by enabling the return of clinically actionable sequencing results to research participants in a standardized manner. We describe a proposed structure for such a centralized service and evaluate the advantages and challenges of the approach. We suggest that such a service would be of greater benefit to all parties involved than present practice, which is highly variable. We encourage research centers to consider the adoption of a centralized SGFS.


Assuntos
Genoma Humano , Genômica/métodos , Achados Incidentais , Predisposição Genética para Doença , Humanos , Análise de Sequência
2.
Genome Biol ; 19(1): 117, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111345

RESUMO

BACKGROUND: Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons. RESULTS: We developed a means of undertaking motoneuron-specific CLIP to explore motoneuron-specific protein-RNA interactions relative to studies of the whole spinal cord in mouse. This allowed us to pinpoint differential RNA regulation specific to motoneurons, revealing a major role for NOVA in regulating cytoskeleton interactions in motoneurons. In particular, NOVA specifically promotes the palmitoylated isoform of the cytoskeleton protein Septin 8 in motoneurons, which enhances dendritic arborization. CONCLUSIONS: Our study demonstrates that cell type-specific RNA regulation is important for fine tuning motoneuron physiology and highlights the value of defining RNA processing regulation at single cell type resolution.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Citoesqueleto/metabolismo , Imunoprecipitação , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/metabolismo , Dendritos/metabolismo , Éxons/genética , Lipoilação , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Proteínas do Tecido Nervoso/química , Antígeno Neuro-Oncológico Ventral , Pseudópodes/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/química , Septinas/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA