Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(2): 842-849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849021

RESUMO

PURPOSE: To develop a flexible, lightweight, and multi-purpose integrated parallel reception, excitation, and shimming (iPRES) coil array that can conform to the subject's anatomy and perform MR imaging and localized B0 shimming in different anatomical regions with a high SNR, shimming performance, ease of positioning, and subject comfort. METHODS: A four-channel flexible iPRES coil array was constructed by enabling RF and direct currents to flow on the same flexible coil elements for imaging and shimming, respectively. Shimming experiments were performed with the coil array wrapped around the knee or neck of healthy subjects to demonstrate its high shimming performance and versatility. Additionally, its SNR and shimming performance in the knee were compared to those obtained with the coil array wrapped around a larger rigid tube designed to fit most knee sizes. RESULTS: Shimming with the coil array wrapped around the knee or neck resulted in an average reduction in B0 RMSE of 50.1% and 40.5% relative to first-order and second-order spherical harmonic shimming, respectively, and substantially reduced distortions in DWI images. In contrast, shimming the knee with the coil array wrapped around the rigid tube only provided a 29.6% reduction in B0 RMSE, whereas the SNR was reduced by 58.7%. CONCLUSION: The flexible iPRES coil array can conform to different anatomical regions and perform imaging and localized B0 shimming with a higher SNR, shimming performance, ease of positioning, and comfort compared to a rigid iPRES coil array, which should be valuable for many applications throughout the human body.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Articulação do Joelho/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
Magn Reson Med ; 88(2): 1002-1014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35468243

RESUMO

PURPOSE: To develop a wireless integrated parallel reception, excitation, and shimming (iPRES-W) coil array for simultaneous imaging and wireless localized B0 shimming, and to demonstrate its ability to correct for distortions in DTI of the spinal cord in vivo. METHODS: A 4-channel coil array was modified to allow an RF current at the Larmor frequency and a direct current to flow on each coil element, enabling imaging and localized B0 shimming, respectively. One coil element was further modified to allow additional RF currents within a wireless communication band to flow on it to wirelessly control the direct currents for shimming, which were supplied from a battery pack within the scanner bore. The RF signals for imaging were transferred via conventional wired connections. Experiments were conducted to evaluate the RF, B0 shimming, and wireless performance of this coil design. RESULTS: The coil modifications did not degrade the SNR. Wireless localized B0 shimming with the iPRES-W coil array substantially reduced the B0 RMSE (-57.5% on average) and DTI distortions in the spinal cord. The antenna radiation efficiency, antenna gain pattern, and battery power consumption of an iPRES-W coil measured in an anechoic chamber were minimally impacted by the introduction of a saline phantom representing tissue. CONCLUSION: The iPRES-W coil array can perform imaging and wireless localized B0 shimming of the spinal cord with no SNR degradation, with minimal change in wireless performance and without any scanner modifications or additional antenna systems within the scanner bore.


Assuntos
Medula Cervical , Imageamento por Ressonância Magnética , Encéfalo , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Medula Espinal/diagnóstico por imagem
3.
J Magn Reson Imaging ; 55(4): 1026-1042, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324753

RESUMO

Radio-frequency (RF) coils are to magnetic resonance imaging (MRI) scanners what eyes are to the human body. Because of their critical importance, there have been constant innovations driving the rapid development of RF coil technologies. Over the past four decades, the breadth and depth of the RF coil technology evolution have far exceeded the space allowed for this review article. However, these past developments have laid the very foundation on which some of the recent technical breakthroughs are built upon. Here, we narrow our focus on some of the most recent RF coil advances, specifically, on flexible, wireless, and integrated coil arrays. To provide a detailed review, we discuss the theoretical underpinnings, experimental implementations, promising results, as well as future outlooks covering these exciting topics. These recent innovations have greatly improved patient comfort and ease of scan, while also increasing the signal-to-noise ratio, image resolution, temporal throughput, and diagnostic and treatment accuracy. Together with advances in other MRI subfields, they will undoubtedly continue to drive the field forward and lead us to an ever more exciting future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Processamento de Imagem Assistida por Computador , Ondas de Rádio , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Tecnologia
4.
Magn Reson Med ; 86(6): 3067-3081, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288086

RESUMO

PURPOSE: Gradient-echo echo-planar imaging (EPI), which is typically used for blood oxygenation level-dependent (BOLD) functional MRI (fMRI), suffers from distortions and signal loss caused by localized B0 inhomogeneities. Such artifacts cannot be effectively corrected for with the low-order spherical harmonic (SH) shim coils available on most scanners. The integrated parallel reception, excitation, and shimming (iPRES) coil technology allows radiofrequency (RF) and direct currents to flow on each coil element, enabling imaging and localized B0 shimming with one coil array. iPRES was previously used to correct for distortions in spin-echo EPI and is further developed here to also recover signal loss in gradient-echo EPI. METHODS: The cost function in the shim optimization, which typically uses a single term representing the B0 inhomogeneity, was modified to include a second term representing the signal loss, with an adjustable weight to optimize the trade-off between distortion correction and signal recovery. Simulations and experiments were performed to investigate the shimming performance. RESULTS: Slice-optimized shimming with iPRES and the proposed cost function substantially reduced the signal loss in the inferior frontal and temporal brain regions compared to shimming with iPRES and the original cost function or 2nd -order SH shimming with either cost function. In breath-holding fMRI experiments, the ΔB0 and signal loss root-mean-square errors decreased by -34.3% and -56.2%, whereas the EPI signal intensity and number of activated voxels increased by 60.3% and 174.0% in the inferior frontal brain region. CONCLUSION: iPRES can recover signal loss in gradient-echo EPI, which is expected to improve BOLD fMRI studies in brain regions suffering from signal loss.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Ondas de Rádio , Tecnologia
5.
Magn Reson Med ; 81(3): 2176-2183, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277273

RESUMO

PURPOSE: An innovative radio-frequency (RF) coil design that allows RF currents both at the Larmor frequency and in a wireless communication band to flow on the same coil is proposed to enable simultaneous MRI signal reception and wireless data transfer, thereby minimizing the number of wired connections in the scanner without requiring any modifications or additional hardware within the scanner bore. METHODS: As a first application, the proposed integrated RF/wireless coil design was further combined with an integrated RF/shim coil design to perform not only MR image acquisition and wireless data transfer, but also localized B0 shimming with a single coil. Proof-of-concept phantom experiments were conducted with such a coil to demonstrate its ability to simultaneously perform these three functions, while maintaining the RF performance, wireless data integrity, and B0 shimming performance. RESULTS: Performing wirelessly controlled shimming of localized B0 inhomogeneities with the coil substantially reduced the B0 root-mean-square error (>70%) and geometric distortions in echo-planar images without degrading the image quality, signal-to-noise ratio (<1.7%), or wireless data throughput (maximum variance = 0.04 Mbps) of the coil. CONCLUSIONS: The RF/wireless coil design can provide a solution for wireless data transfer that can be easily integrated into existing MRI scanners for a variety of applications.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Tecnologia sem Fio , Algoritmos , Calibragem , Simulação por Computador , Imagem Ecoplanar/métodos , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Razão Sinal-Ruído , Software
6.
Magn Reson Med ; 80(1): 371-379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29148102

RESUMO

PURPOSE: Integrated parallel reception, excitation, and shimming coil arrays with N shim loops per radio-frequency (RF) coil element (iPRES(N)) allow an RF current and N direct currents (DC) to flow in each coil element, enabling simultaneous reception/excitation and shimming of highly localized B0 inhomogeneities. The purpose of this work was to reduce the cost and complexity of this design by reducing the number of DC power supplies required by a factor N, while maintaining a high RF and shimming performance. METHODS: In the proposed design, termed adaptive iPRES(N) (iPRES(N)-A), each coil element only requires one DC power supply, but uses microelectromechanical systems switches to adaptively distribute the DC current into the appropriate shim loops to generate the desired magnetic field for B0 shimming. Proof-of-concept phantom experiments with an iPRES(2)-A coil and simulations in the human abdomen with an 8-channel iPRES(4)-A body coil array were performed to demonstrate the advantages of this innovative design. RESULTS: The iPRES(2)-A coil showed no loss in signal-to-noise ratio and provided a much more effective correction of highly localized B0 inhomogeneities and geometric distortions than an equivalent iPRES(1) coil (88.2% vs. 32.2% lower B0 root-mean-square error). The iPRES(4)-A coil array showed a comparable shimming performance as that of an equivalent iPRES(4) coil array (52.6% vs. 54.2% lower B0 root-mean-square error), while only requiring 8 instead of 32 power supplies. CONCLUSION: The iPRES(N)-A design retains the ability of the iPRES(N) design to shim highly localized B0 inhomogeneities, while drastically reducing its cost and complexity. Magn Reson Med 80:371-379, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
7.
Magn Reson Med ; 77(5): 2077-2086, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27174387

RESUMO

PURPOSE: Integrated parallel reception, excitation, and shimming (iPRES) coil arrays allow radio-frequency currents and direct currents to flow in the same coils, which enables excitation/reception and localized B0 shimming with a single coil array. The purpose of this work was to improve their shimming performance by adding the capability to shim higher-order local B0 inhomogeneities that are smaller than the radio-frequency coil elements. METHODS: A novel design was proposed in which each radio-frequency/shim coil element is divided into multiple direct current loops, each using an independent direct current current, to increase the number of magnetic fields available for shimming while maintaining the signal-to-noise ratio of the coil. This new design is termed iPRES(N), where N represents the number of direct current loops per radio-frequency coil element. Proof-of-concept phantom and human experiments were performed with an 8-channel body coil array to demonstrate its advantages over the original iPRES(1) design. RESULTS: The average B0 homogeneity in various organs before shimming and after shimming with the iPRES(1) or iPRES(3) coil arrays was 0.24, 0.11, and 0.05 ppm, respectively. iPRES(3) thus reduced the B0 inhomogeneity by 53% and further reduced distortions in echo-planar images of the abdomen when compared with iPRES(1). CONCLUSION: iPRES(N) can correct for localized B0 inhomogeneities more effectively than iPRES(1) with no signal-to-noise ratio loss, resulting in a significant improvement in image quality. Magn Reson Med 77:2077-2086, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Abdome/diagnóstico por imagem , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Calibragem , Imagem Ecoplanar/métodos , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Campos Magnéticos , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Razão Sinal-Ruído
8.
Neuroimage ; 103: 235-240, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270602

RESUMO

The purpose of this work was to develop a novel integrated radiofrequency and shim (RF/shim) coil array that can perform parallel reception and localized B0 shimming in the human brain with the same coils, thereby maximizing both the signal-to-noise ratio and shimming efficiency. A 32-channel receive-only head coil array was modified to enable both RF currents (for signal reception) and direct currents (for B0 shimming) to flow in individual coil elements. Its in vivo performance was assessed in the frontal brain region, which is affected by large susceptibility-induced B0 inhomogeneities. The coil modifications did not reduce their quality factor or signal-to-noise ratio. Axial B0 maps and echo-planar images acquired in vivo with direct currents optimized to shim specific slices showed substantially reduced B0 inhomogeneities and image distortions in the frontal brain region. The B0 root-mean-square error in the anterior half of the brain was reduced by 60.3% as compared to that obtained with second-order spherical harmonic shimming. These results demonstrate that the integrated RF/shim coil array can perform parallel reception and localized B0 shimming in the human brain and provide a much more effective shimming than conventional spherical harmonic shimming alone, without taking up additional space in the magnet bore and without compromising the signal-to-noise ratio or shimming performance.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Encéfalo/fisiologia , Humanos
9.
Phys Med Biol ; 68(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37192635

RESUMO

Objective.A novel magnetic resonance imaging (MRI) radio-frequency (RF) coil design, termed an integrated RF/wireless (iRFW) coil design, can simultaneously perform MRI signal reception and far-field wireless data transfer with the same coil conductors between the coil in the scanner bore and an access point (AP) on the scanner room wall. The objective of this work is to optimize the design inside the scanner bore to provide a link budget between the coil and the AP for the wireless transmission of MRI data.Approach.Electromagnetic simulations were performed at the Larmor frequency of a 3T scanner and in a WiFi wireless communication band to optimize the radius and position of an iRFW coil located near the head of a human model inside the scanner bore, which were validated by performing both imaging and wireless experiments.Main Results.The simulated iRFW coil with a 40 mm radius positioned near the model forehead provided: a signal-to-noise ratio (SNR) comparable to that of a traditional RF coil with the same radius and position, a power absorbed by the human model within regulatory limits, and a gain pattern in the scanner bore resulting in a link budget of 51.1 dB between the coil and an AP located behind the scanner 3 m from the isocenter, which would be sufficient to wirelessly transfer MRI data acquired with a 16-channel coil array. The SNR, gain pattern, and link budget for initial simulations were validated by experimental measurements in an MRI scanner and anechoic chamber to provide confidence in this methodology. These results show that the iRFW coil design must be optimized within the scanner bore for the wireless transfer of MRI data.Significance.The MRI RF coil array coaxial cable assembly connected to the scanner increases patient setup time, can present a serious burn risk to patients and is an obstacle to the development of the next generation of lightweight, flexible or wearable coil arrays that provide an improved coil sensitivity for imaging. Significantly, the RF coaxial cables and corresponding receive chain electronics can be removed from within the scanner by integrating the iRFW coil design into an array for the wireless transmission of MRI data outside of the bore.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA