Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EMBO J ; 43(8): 1634-1652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467832

RESUMO

During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.


Assuntos
Endopeptidases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Endopeptidases/metabolismo , Proteólise
2.
J Bacteriol ; 204(4): e0062821, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35293777

RESUMO

Proteolysis is essential throughout life, and as more proteases are characterized, our understanding of the roles they play continues to expand. Among other things, proteases are critical for protein turnover and quality control, the activation or inactivation of some enzymes, and they are integral components of signal transduction pathways. This review focuses on a family of proteases in bacteria known as the carboxyl-terminal processing proteases, or CTPs. Members of this family occur in all domains of life. In bacteria, CTPs have emerged as important enzymes that have been implicated in critical processes including regulation, stress response, peptidoglycan remodeling, and virulence. Here, we provide an overview of the roles that CTPs play in diverse bacterial species, and some of the underlying mechanisms. We also describe the structures of some bacterial CTPs, and their adaptor proteins, which have revealed striking differences in arrangements and mechanisms of action. Finally, we discuss what little is known about the distinguishing features of CTP substrates and cleavage sites, and speculate about how CTP activities might be regulated in the bacterial cell. Compared with many other proteases, the study of bacterial CTPs is still in its infancy, but it has now become clear that they affect fundamental processes in many different species. This is a protease family with broad significance, and one that holds the promise of more high impact discoveries to come.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Parede Celular/metabolismo , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptidoglicano/metabolismo
3.
J Bacteriol ; 203(24): e0039321, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34570626

RESUMO

The Pseudomonas aeruginosa lipoprotein LbcA was discovered because it copurified with and promoted the activity of CtpA, a carboxyl-terminal processing protease (CTP) required for type III secretion system function and virulence in a mouse model of acute pneumonia. In this study, we explored the role of LbcA by determining its effect on the proteome and its participation in protein complexes. lbcA- and ctpA-null mutations had strikingly similar effects on the proteome, suggesting that assisting CtpA might be the most impactful role of LbcA in the bacterial cell. Independent complexes containing LbcA and CtpA, or LbcA and a substrate, were isolated from P. aeruginosa cells, indicating that LbcA facilitates proteolysis by recruiting the protease and its substrates independently. An unbiased examination of proteins that copurified with LbcA revealed an enrichment for proteins associated with the cell wall. One of these copurification partners was found to be a new CtpA substrate and the first substrate that is not a peptidoglycan hydrolase. Many of the other LbcA copurification partners are known or predicted peptidoglycan hydrolases. However, some of these LbcA copurification partners were not cleaved by CtpA, and an in vitro assay revealed that while CtpA and all of its substrates bound to LbcA directly, these nonsubstrates did not. Subsequent experiments suggested that the nonsubstrates might copurify with LbcA by participating in multienzyme complexes containing LbcA-binding CtpA substrates. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are widely conserved and associated with the virulence of several bacteria, including CtpA in Pseudomonas aeruginosa. CtpA copurifies with the uncharacterized lipoprotein LbcA. This study shows that the most impactful role of LbcA might be to promote CtpA-dependent proteolysis and that it achieves this as a scaffold for CtpA and its substrates. It also reveals that LbcA copurification partners are enriched for cell wall-associated proteins, one of which is a novel CtpA substrate. Some of the LbcA copurification partners are not cleaved by CtpA but might copurify with LbcA because they participate in multienzyme complexes containing CtpA substrates. These findings are important because CTPs and their associated proteins affect peptidoglycan remodeling and virulence in multiple species.


Assuntos
Parede Celular/metabolismo , Lipoproteínas/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Endopeptidases/metabolismo , Lipoproteínas/química , Mutação , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptídeo Hidrolases/genética , Peptidoglicano , Pseudomonas aeruginosa/genética , Especificidade por Substrato , Sistemas de Secreção Tipo III/metabolismo
4.
Annu Rev Microbiol ; 70: 83-101, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297125

RESUMO

The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.


Assuntos
Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Bactérias/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais
5.
J Bacteriol ; 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482720

RESUMO

Bacterial carboxyl-terminal processing proteases (CTPs) are widely conserved and have been linked to important processes including signal transduction, cell wall metabolism, and virulence. However, the features that target proteins for CTP-dependent cleavage are unclear. Studies of the Escherichia coli CTP Prc suggested that it cleaves proteins with non-polar and/or structurally unconstrained C-termini, but it is not clear if this applies broadly. Pseudomonas aeruginosa has a divergent CTP, CtpA, which is required for virulence. CtpA works in complex with the outer membrane lipoprotein LbcA to degrade cell wall hydrolases. Here, we investigated if the C-termini of two non-homologous CtpA substrates are important for their degradation. We determined that these substrates have extended C-termini, compared to their closest E. coli homologs. Removing seven amino acids from these extensions was sufficient to reduce their degradation by CtpA both in vivo and in vitro Degradation of one truncated substrate was restored by adding the C-terminus from the other, but not by adding an unrelated sequence. However, modification of the C-terminus of non-substrates, by adding the C-terminal amino acids from a substrate, did not cause their degradation by CtpA. Therefore, the C-termini of CtpA substrates are required but not sufficient for their efficient degradation. Although C-terminal truncated substrates were protected from degradation, they still associated with the LbcA•CtpA complex in vivo Therefore, degradation of a protein by CtpA requires a C-terminal-independent interaction with the LbcA•CtpA complex, followed by C-terminal-dependent degradation, perhaps because CtpA normally initiates cleavage at a C-terminal site.IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are found in all three domains of life, but exactly how they work is poorly understood, including how they recognize substrates. Bacterial CTPs have been associated with virulence, including CtpA of Pseudomonas aeruginosa, which works in complex with the outer membrane lipoprotein LbcA to degrade potentially dangerous peptidoglycan hydrolases. We report an important advance by revealing that efficient degradation by CtpA requires at least two separable phenomena, and that one of them depends on information encoded in the substrate C-terminus. A C-terminal-independent association with the LbcA•CtpA complex is followed by C-terminal-dependent cleavage by CtpA. Increased understanding of how CTPs target proteins is significant, due to their links to virulence, peptidoglycan remodeling, and other important processes.

6.
J Bacteriol ; 198(24): 3367-3378, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27698088

RESUMO

The phage shock protein (Psp) system is a widely conserved cell envelope stress response that is essential for the virulence of some bacteria, including Yersinia enterocolitica Recruitment of PspA by the inner membrane PspB-PspC complex characterizes the activated state of this response. The PspB-PspC complex has been proposed to be a stress-responsive switch, changing from an OFF to an ON state in response to an inducing stimulus. In the OFF state, PspA cannot access its binding site in the C-terminal cytoplasmic domain of PspC (PspCCT), because this site is bound to PspB. PspC has another cytoplasmic domain at its N-terminal end (PspCNT), which has been thought to play a role in maintaining the OFF state, because its removal causes constitutive activation. However, until now, this role has proved recalcitrant to experimental investigation. Here, we developed a combination of approaches to investigate the role of PspCNT in Y. enterocolitica Pulldown assays provided evidence that PspCNT mediates the interaction of PspC with the C-terminal cytoplasmic domain of PspB (PspBCT) in vitro Furthermore, site-specific oxidative cross-linking suggested that a PspCNT-PspBCT interaction occurs only under noninducing conditions in vivo Additional experiments indicated that mutations in pspC might cause constitutive activation by compromising this PspCNT binding site or by causing a conformational disturbance that repositions PspCNT in vivo These findings have provided the first insight into the regulatory function of the N-terminal cytoplasmic domain of PspC, revealing that its ability to participate in an inhibitory complex is essential to silencing the Psp response. IMPORTANCE: The phage shock protein (Psp) response has generated widespread interest because it is linked to important phenotypes, including antibiotic resistance, biofilm formation, and virulence in a diverse group of bacteria. Therefore, achieving a comprehensive understanding of how this response is controlled at the molecular level has obvious significance. An integral inner membrane protein complex is believed to be a critical regulatory component that acts as a stress-responsive switch, but some essential characteristics of the switch states are poorly understood. This study provides an important advance by uncovering a new protein interaction domain within this membrane protein complex that is essential to silencing the Psp response in the absence of an inducing stimulus.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Mutação , Ligação Proteica , Domínios Proteicos , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
7.
J Biol Chem ; 290(18): 11417-30, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802329

RESUMO

The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspC(CT)) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspC(CT) can interact with the C-terminal domain of PspB (PspC(CT)·PspB(CT)). However, the PspC(CT)·PspB(CT) and PspC(CT)·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspC(CT) contacted PspB(CT) in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspC(CT) partner-switching mechanism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Salmonella enterica/citologia , Salmonella enterica/metabolismo , Estresse Fisiológico , Yersinia enterocolitica/citologia , Yersinia enterocolitica/metabolismo , Citoplasma/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Salmonella enterica/fisiologia , Transdução de Sinais , Yersinia enterocolitica/fisiologia
8.
J Bacteriol ; 197(17): 2770-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26078446

RESUMO

UNLABELLED: Secretins are multimeric outer membrane pore-forming proteins found in complex export systems in Gram-negative bacteria. All type III secretion systems (T3SSs) have a secretin, and one of these is the YsaC secretin of the chromosomally encoded Ysa T3SS of Yersinia enterocolitica. In some cases, pilotin proteins, which are outer membrane lipoproteins, are required for their cognate secretins to multimerize and/or localize to the outer membrane. However, if secretin multimers mislocalize to the inner membrane, this can trigger the protective phage shock protein (Psp) stress response. During a screen for mutations that suppress YsaC toxicity to a psp null strain, we isolated several independent mutations predicted to increase expression of the YE3559 gene within the Ysa pathogenicity island. YE3559, which we have named ysaP, is predicted to encode a small outer membrane lipoprotein, and this location was confirmed by membrane fractionation. Elevated ysaP expression increased the steady-state level of YsaC but made it less toxic to a psp null strain, and it also decreased YsaC-dependent induction of psp gene expression. Subsequent experiments showed that YsaP was not required for YsaC multimerization but was required for the multimers to localize to the outer membrane. Consistent with this, a ysaP null mutation compromised protein export by the Ysa T3SS. All these observations suggest that YsaP is the pilotin for the YsaC secretin. This is only the second pilotin to be characterized for Yersinia and one of only a small number of pilotins described for all bacteria. IMPORTANCE: Secretins are essential for the virulence of many bacterial pathogens and also play roles in surface attachment, motility, and competence. This has generated considerable interest in understanding how secretins function. However, their fundamental differences from typical outer membrane proteins have raised various questions about secretins, including how they are assembled into outer membrane multimers. Pilotin proteins facilitate the assembly of some secretins, but only a small number of pilotins have been identified, slowing efforts to understand common and distinct features of secretin assembly. This study provides an important advance by identifying a novel member of the pilotin family and also demonstrating a method of pilotin discovery that could be broadly applied.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Yersinia enterocolitica/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Dados de Sequência Molecular , Conformação Proteica , Yersinia enterocolitica/genética
9.
Mol Microbiol ; 87(3): 656-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23290031

RESUMO

PspA, -B and -C regulate the bacterial phage shock protein stress response by controlling the PspF transcription factor. Here, we have developed complementary approaches to study the behaviour of these proteins at their endogenous levels in Yersinia enterocolitica. First, we observed GFP-tagged versions with an approach that resolves individual protein complexes in live cells. This revealed that PspA, -B and -C share common behaviours, including a striking contrast before and after induction. In uninduced cells, PspA, -B and -C were highly mobile and widely distributed. However, induction reduced mobility and the proteins became more organized. Combining mCherry- and GFP-tagged proteins also revealed that PspA colocalizes with PspB and PspC into large stationary foci, often located close to the pole of induced cells. In addition, co-immunoprecipitation assays provided the first direct evidence supporting the model that PspA switches binding partners from PspF to PspBC upon induction. Together, these data suggest that PspA, -B and -C do not stably interact and are highly mobile before induction, perhaps sampling the status of the membrane and each other. However, an inducing signal promotes PspABC complex formation and their relocation to discrete parts of the membrane, which might then be important for mitigating envelope stress.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Estresse Fisiológico , Yersinia enterocolitica/fisiologia , Fusão Gênica Artificial , Membrana Celular/química , Genes Reporter , Imunoprecipitação , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão , Coloração e Rotulagem
10.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38854061

RESUMO

In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22 , which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays, and two different inducing conditions, all suggested that AlgW is the only site-1 protease for wild type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild type MucA, but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE: After colonizing the lungs of individuals with cystic fibrosis, P. aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain, and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.

11.
Infect Immun ; 81(12): 4561-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24082078

RESUMO

Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence.


Assuntos
Carboxipeptidases/metabolismo , Endopeptidases/metabolismo , Pró-Proteína Convertases/metabolismo , Pseudomonas aeruginosa/patogenicidade , Proteínas de Algas , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Células CHO , Carboxipeptidases/deficiência , Carboxipeptidases/genética , Cricetulus , Endopeptidases/deficiência , Endopeptidases/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/microbiologia , Pneumonia/patologia , Pró-Proteína Convertases/deficiência , Pró-Proteína Convertases/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Fator sigma/metabolismo
12.
Mol Microbiol ; 85(3): 445-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22646656

RESUMO

The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent.


Assuntos
Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas de Bactérias/genética , Proteínas de Choque Térmico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Nitrofenilgalactosídeos/metabolismo , Óperon , Fenótipo , Multimerização Proteica , Secretina/biossíntese , Secretina/química , Secretina/toxicidade , Yersinia enterocolitica/genética , Yersinia enterocolitica/crescimento & desenvolvimento
13.
mBio ; : e0202223, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047649

RESUMO

IMPORTANCE: A peptidoglycan cell wall is an essential component of almost all bacterial cell envelopes, which determines cell shape and prevents osmotic rupture. Antibiotics that interfere with peptidoglycan synthesis have been one of the most important treatments for bacterial infections. Peptidoglycan must also be hydrolyzed to incorporate new material for cell growth and division and to help accommodate important envelope-spanning systems. However, the enzymes that hydrolyze peptidoglycan must be carefully controlled to prevent autolysis. Exactly how this control is achieved is poorly understood in most cases but is a highly active area of current research. Identifying hydrolase control mechanisms has the potential to provide new targets for therapeutic intervention. The work here reports the important discovery of a novel inhibitor/anti-inhibitor system that controls the activity of a cell wall hydrolase in the human pathogen Pseudomonas aeruginosa, which also affects resistance to an antibiotic used in the clinic.

14.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546783

RESUMO

Most bacterial cell envelopes contain a cell wall layer made of peptidoglycan. The synthesis of new peptidoglycan is critical for cell growth, division and morphogenesis, and is also coordinated with peptidoglycan hydrolysis to accommodate the new material. However, the enzymes that cleave peptidoglycan must be carefully controlled to avoid autolysis. In recent years, some control mechanisms have begun to emerge, although there are many more questions than answers for how most cell wall hydrolases are regulated. Here, we report a novel cell wall hydrolase control mechanism in Pseudomonas aeruginosa , which we discovered during our characterization of a mutant sensitive to the overproduction of a secretin protein. The mutation affected an uncharacterized Sel1-like repeat protein encoded by the PA3978 locus. In addition to the secretin-sensitivity phenotype, PA3978 disruption also increased resistance to a ß-lactam antibiotic used in the clinic. In vivo and in vitro analysis revealed that PA3978 binds to the catalytic domain of the lytic transglycosylase MltF and inhibits its activity. ΔPA3978 mutant phenotypes were suppressed by deleting mltF , consistent with them having been caused by elevated MltF activity. We also discovered another interaction partner of PA3978 encoded by the PA5502 locus. The phenotypes of a ΔPA5502 mutant suggested that PA5502 interferes with the inhibitory function of PA3978 towards MltF, and we confirmed that activity for PA5502 in vitro . Therefore, PA3978 and PA5502 form an inhibitor/anti-inhibitor system that controls MltF activity. We propose to name these proteins Ilt (inhibitor of lytic transglycosylase) and Lii (lytic transglycosylase inhibitor, inhibitor). IMPORTANCE: A peptidoglycan cell wall is an essential component of almost all bacterial cell envelopes, which determines cell shape and prevents osmotic rupture. Antibiotics that interfere with peptidoglycan synthesis have been one of the most important treatments for bacterial infections. Peptidoglycan must also be hydrolyzed to incorporate new material for cell growth and division, and to help accommodate important envelope-spanning systems. However, the enzymes that hydrolyze peptidoglycan must be carefully controlled to prevent autolysis. Exactly how this control is achieved is poorly understood in most cases, but is a highly active area of current research. Identifying hydrolase control mechanisms has the potential to provide new targets for therapeutic intervention. The work here reports the important discovery of a novel inhibitor/anti-nhibitor system that controls the activity of a cell wall hydrolase in the human pathogen Pseudomonas aeruginosa , and which also affects resistance to an antibiotic used in the clinic.

15.
J Bacteriol ; 194(23): 6548-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23024349

RESUMO

Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analyses yield conflicting predictions for PspC: a bitopic membrane protein with the C terminus inside, a bitopic membrane protein with the C terminus outside, or a polytopic protein with both termini inside. Previous studies of Escherichia coli PspB-LacZ and PspC-PhoA fusion proteins supported bitopic topologies, with the PspB C terminus inside and the PspC C terminus outside. Here we have used a series of independent approaches to determine the membrane topologies of PspB and PspC in Y. enterocolitica. Our data support the predicted arrangement of PspB, with its C terminus in the cytoplasm. In contrast, data from multiple independent approaches revealed that both termini of PspC are located in the cytoplasm. Additional experiments suggested that the C terminus of PspC might be the recognition site for the FtsH protease and an interaction interface with PspA, both of which would be compatible with its newly proposed cytoplasmic location. This unexpected arrangement of PspC allows a new model for events underlying activation of the Psp response, which is an excellent fit with observations from various previous studies.


Assuntos
Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Yersinia enterocolitica/virologia
16.
mBio ; 13(1): e0368021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038915

RESUMO

Pseudomonas aeruginosa CtpA is a carboxyl-terminal processing protease that partners with the outer membrane lipoprotein LbcA to degrade at least five cell wall-associated proteins, four of which are cell wall hydrolases. This activity plays an important role in supporting P. aeruginosa virulence in a mouse model of acute pneumonia. However, almost nothing is known about the molecular mechanisms underlying CtpA and LbcA function. Here, we used structural analysis to show that CtpA alone assembles into an inactive hexamer comprising a trimer of dimers, which limits its substrate access and prevents nonspecific degradation. The adaptor protein LbcA is a right-handed open spiral with 11 tetratricopeptide repeats, which might wrap around a substrate to deliver it to CtpA for degradation. By structure-guided mutagenesis and functional assays, we also showed that the interfaces of the CtpA trimer of dimers and an N-terminal helix of LbcA are important for LbcA-mediated substrate degradation by CtpA both in vitro and in vivo. This work improves our understanding of the molecular mechanism of the LbcA-CtpA proteolytic system and reveals some striking differences from the arrangements found in some other bacterial CTPs. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are found in all three domains of life. In bacteria, some CTPs have been associated with virulence, raising the possibility that they could be therapeutic targets. However, relatively little is known about their molecular mechanisms of action. In Pseudomonas aeruginosa, CtpA supports virulence by working in complex with the outer membrane lipoprotein LbcA to degrade cell wall hydrolases. Here, we report structure-function analyses of CtpA and LbcA, which reveals that CtpA assembles into an inactive hexamer comprising a trimer of dimers. LbcA is monomeric, with the first N-terminal helix important for binding to and activating CtpA, followed by a spiral structure composed of 11 tetratricopeptide repeats, which could wrap around a substrate for delivery to CtpA. This work reveals a unique mutimeric arrangement for a CTP and insight into how the important LbcA-CtpA proteolytic system functions.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Proteólise , Proteínas de Membrana/metabolismo , Lipoproteínas/metabolismo
17.
J Bacteriol ; 193(23): 6436-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965563

RESUMO

The widely conserved phage shock protein (Psp) extracytoplasmic stress response has been studied extensively in Escherichia coli and Yersinia enterocolitica. Both species have the PspF, -A, -B, and -C proteins, which have been linked to robust phenotypes, including Y. enterocolitica virulence. PspB and PspC are cytoplasmic membrane proteins required for stress-dependent induction of psp gene expression and for bacterial survival during the mislocalization of outer membrane secretin proteins. Previously, we reported that Y. enterocolitica PspB functions to positively control the amount of PspC by an uncharacterized posttranscriptional mechanism. In this study, we have discovered that the cytoplasmic membrane protease FtsH is involved in this phenomenon. FtsH destabilizes PspC in Y. enterocolitica, but coproduction of PspC with its binding partner PspB was sufficient to prevent this destabilization. In contrast, FtsH did not affect any other core component of the Psp system. These data suggested that uncomplexed PspC might be particularly deleterious to the bacterial cell and that FtsH acts as an important quality control mechanism to remove it. This was supported by the observation that toxicity caused by PspC production was reduced either by coproduction of PspB or by increased synthesis of FtsH. We also found that the phenomenon of FtsH-dependent PspC destabilization is conserved between Y. enterocolitica and E. coli.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Yersinia enterocolitica/metabolismo , Proteases Dependentes de ATP/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Transativadores/genética , Fatores de Transcrição/genética , Yersinia enterocolitica/enzimologia , Yersinia enterocolitica/genética
18.
J Bacteriol ; 193(20): 5747-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21856846

RESUMO

The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Yersinia enterocolitica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dimerização , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
19.
Mol Microbiol ; 78(2): 429-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20979344

RESUMO

Regulation of the bacterial phage-shock-protein (Psp) system involves communication between integral (PspBC) and peripheral (PspA) cytoplasmic membrane proteins and a soluble transcriptional activator (PspF). In this study protein subcellular localization studies were used to distinguish between spatial models for this putative signal transduction pathway in Yersinia enterocolitica. In non-inducing conditions PspA and PspF were almost exclusively in the soluble fraction, consistent with them forming an inhibitory complex in the cytoplasm. However, upon induction PspA, but not PspF, mainly associated with the membrane fraction. This membrane association was dependent on PspBC but independent of increased PspA concentration. Analysis of psp null, overexpression and altered function mutants further supported a model where PspA is predominantly membrane associated only when the system is induced. Activation of the Psp system normally leads to a large increase in PspA concentration and we found that this provided a second mechanism for its membrane association, which did not require PspBC. These data suggest that basal PspFABC protein levels constitute a regulatory switch that moves some PspA to the membrane when an inducing trigger is encountered. Once this switch is activated PspA concentration increases, which might then allow it to directly contact the membrane for its physiological function.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Yersinia enterocolitica/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Membrana/genética , Mutação , Yersinia enterocolitica/metabolismo
20.
Mol Microbiol ; 74(3): 619-33, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19775245

RESUMO

The Yersinia enterocolitica phage-shock-protein (Psp) stress response system is activated by mislocalized outer-membrane secretin components of protein export systems and is essential for virulence. The cytoplasmic membrane proteins PspB and PspC were proposed to be dual function components of the system, acting both as positive regulators of psp gene expression and to support survival during secretin-induced stress. In this study we have uncoupled the regulatory and physiological functions of PspBC and discovered unexpected new roles, functional domains and essential amino acids. First, we showed that PspB controls PspC concentration by both pre- and post-transcriptional mechanisms. We then screened for PspBC mutants with altered transcriptional regulatory function. Unexpectedly, we identified PspB and PspC mutants that activated psp gene expression in the absence of secretin-induced stress. Together with a subsequent truncation analysis, this revealed that the PspC cytoplasmic domain plays an unforeseen role in negatively regulating psp gene expression. Conversely, mutations within the PspC periplasmic domain abolished its ability to activate psp gene expression. Significantly, PspC mutants unable to activate psp gene expression retained their ability to support survival during secretin-induced stress. These data provide compelling support for the proposal that these two functions are independent.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Yersinia enterocolitica/genética , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Secretina/genética , Secretina/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Virulência/genética , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA