Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570786

RESUMO

Mesosphaerum suaveolens (L.) Kuntze (Syn. Hyptis suaveolens (L.) Poit.) is a wild essential-oil-bearing plant having multiple uses in traditional medicine, perfumery, food, agriculture, and pharmaceutical industries. The present paper is the first report on the in vitro anti-inflammatory effects of the leaf essential oil of M. suaveolens (MSLEO) and unravels its molecular mechanism in LPS-stimulated RAW 264.7 macrophage cells. GC-MS analysis of the essential oil (EO) isolated from the leaves by hydro-distillation led to the identification of 48 constituents, accounting for 90.55% of the total oil, and ß-caryophyllene (16.17%), phyllocladene (11.85%), abietatriene (11.46%), and spathulenol (7.89%) were found to be the major components. MSLEO treatment had no effect on the viability of RAW 264.7 cells up to a concentration of 100 µg/mL, and the EO was responsible for a reduction in proinflammatory cytokines like IL-6, IL-1ß, and TNF-α, a decrease in intracellular ROS production, and the restoration of oxidative damage by elevating the levels of endogenous antioxidative enzymes like CAT, SOD, GPx, and GSH. RT-qPCR analysis indicated that MSLEO reduced the mRNA expression levels of iNOS and COX-2 as compared to the LPS-induced group. In addition, a confocal microscopy analysis showed that MSLEO inhibited the translocation of NF-κB from the cytosol to the nucleus. The results of this experiment demonstrate that MSLEO possesses significant anti-inflammatory potential by preventing the activation of NF-κB, which, in turn, inhibits the downstream expression of other inflammatory mediators associated with the activation of the NF-κB pathway in LPS-induced RAW 264.7 cells. Thus, the leaf essential oil of M. suaveolens may prove to be a promising therapeutic agent for the treatment of inflammation, and targeting the NF-κB signaling pathway may be considered as an attractive approach for anti-inflammatory therapies.


Assuntos
NF-kappa B , Óleos Voláteis , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óleos Voláteis/uso terapêutico , Transdução de Sinais , Macrófagos , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células RAW 264.7 , Estresse Oxidativo
2.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298910

RESUMO

The essential oils of three medicinally important Curcuma species (Curcuma alismatifolia, Curcuma aromatica and Curcuma xanthorrhiza) were extracted using conventional hydro-distillation (HD) and solvent free microwave extraction (SFME) methods. The volatile compounds from the rhizome essential oils were subsequently analysed by GC-MS. The isolation of essential oils of each species was carried out following the six principles of green extraction and comparison was made between their chemical composition, antioxidant, anti-tyrosinase and anticancer activities. SFME was found to be more efficient than HD in terms of energy savings, extraction time, oil yield, water consumption and waste production. Though the major compounds of essential oils of both the species were qualitatively similar, there was a significant difference in terms of quantity. The essential oils extracted through HD and SFME methods were dominated by hydrocarbon and oxygenated compounds, respectively. The essential oils of all Curcuma species exhibited strong antioxidant activity, where SFME was significantly better than HD with lower IC50 values. The anti-tyrosinase and anticancer properties of SFME-extracted oils were relatively better than that of HD. Further, among the three Curcuma species, C. alismatifolia essential oil showed the highest rates of inhibition in DPPH and ABTS assay, significantly reduced the tyrosinase activity and exhibited significant selective cytotoxicity against MCF7 and PC3 cells. The current results suggested that the SFME method, being advanced, green and fast, could be a better alternative for production of essential oils with better antioxidant, anti-tyrosinase and anticancer activities for application in food, health and cosmetic industries.


Assuntos
Óleos Voláteis , Óleos Voláteis/química , Solventes/química , Micro-Ondas , Curcuma , Antioxidantes/farmacologia
3.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500283

RESUMO

Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as ß-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in ß-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.


Assuntos
Lauraceae , Óleos Voláteis , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Células RAW 264.7 , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo
4.
Heliyon ; 10(9): e30361, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737243

RESUMO

Cinnamomum tamala, commonly known as "Indian bay leaf" or "Tejpat", is an economically important plant widely used in medicine, food and cosmetic industries. Growing demand for its leaf and bark in the herbal trade and non-availability of quality materials lead to large-scale species admixture and adulteration in the global market. The present study aims at developing a validated HPLC-DAD (High-performance liquid chromatography coupled with diode array detection) method and multiple markers-based chemical fingerprints for quality evaluation of C. tamala leaf extracts. Five bioactive compounds, viz., coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate, were identified and quantified in 28 samples collected from the western Himalayan region of India. The chromatographic separation was achieved on Shimadzu Shimpak C18 column (dimension 250 × 4.6 mm, pore size 5 µm) with a gradient elution of mobile phase using acetonitrile and 0.1 percent phosphate buffer and the chromatograms were obtained at a wavelength of 265 nm. The method validation was done by analyzing the linearity, LOD, LOQ, precision, stability, repeatability and recovery rates of standard compounds for quantitative analysis. The values of coefficient of correlation (R2) were found to be close to 1 for linearity and similarity analysis; and standard deviation was less than 3 percent in case of precision, stability, repeatability and recovery rates. The content of target compounds such as coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate varied in the range of 0-1.09, 0-0.05, 0.07-0.51, 0.39-1.27 and 0-0.27 percent, respectively. In the chemical fingerprint of C. tamala leaves, a total of 13 peaks were assigned as common peaks. The results of the study indicated that the HPLC method now developed combining chemical fingerprint with quantification of analytes could serve as a useful tool for quality evaluation of herbal raw materials of C. tamala and a valuable reference for further study.

5.
Heliyon ; 10(6): e28026, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533033

RESUMO

Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.

6.
Comb Chem High Throughput Screen ; 26(1): 183-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34951357

RESUMO

BACKGROUND: The essential oils isolated from several medicinal plants have been reported to possess anticancer activities. Both the essential oil and extracts of many Piper species (Piperaceae) possess potential cytotoxic effects against cancer cell lines and are being used in traditional systems of medicine for the treatment of cancer. There is a need to evaluate and validate the anticancer properties of essential oils extracted from other wild species of Piper. OBJECTIVE: The current research was undertaken to determine the chemical composition and investigate the anti-proliferative activity of wild-growing Piper trioicum leaf essential oil. The selected five major constituents were subjected to molecular docking to identify possible modes of binding against serine/threonine-protein kinase (MST3) protein. METHODS: The essential oil of leaf of P. trioicum was extracted by hydrodistillation method, and its chemical composition was evaluated by GC-FID and GC-MS. The anti-proliferative activity of the essential oil was evaluated by the MTT assay against normal (3T3-L1) and various cancer (HCT 116, HT-29, PC-3 and HepG2) cell lines. Molecular docking analysis was performed using the AutoDock 4.2 software. The pharmacokinetic and pharmacodynamic properties of the major constituents were determined using absorption, distribution, metabolization, excretion and toxicity (ADMET) analysis. RESULTS: The GC-MS analysis revealed the identification of 45 constituents with δ-cadinene (19.57%), germacrene-D (8.54%), ß-caryophyllene (6.84%), 1-epi-cubenol (4.83%) and α-pinene (4.52%) being predominant constituents in the leaf essential oil of P. trioicum. The highest cytotoxicity of essential oil was observed against HT-29 cells (IC50 value of 33.14 µg/ml). 1-epi-cubenol and δ-cadinene exhibited low binding energy values of -6.25 and -5.92 kcal/mol, respectively. For prediction of in silico pharmacokinetic and drug-like properties of the major compounds, the ADMET prediction tool was used, the results of which were observed to be within the ideal range. CONCLUSION: The present findings demonstrate that P. trioicum essential oil possesses significant anti-proliferative activity and could be effective against cancer treatment.


Assuntos
Óleos Voláteis , Piper , Humanos , Óleos Voláteis/farmacologia , Simulação de Acoplamento Molecular , Células HT29
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA