Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
2.
Immunity ; 39(6): 1057-69, 2013 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-24315995

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. This study provided an explanation for why loss of FoxP3 in inducible regulatory T cells results in reduced expression of interleukin (IL)-10 despite the absence of FoxP3 binding sites in the IL-10 promoter. STAT3 binding sites do exist in the promoter, and evidence for a direct molecular interaction between FoxP3 and STAT3 proteins was provided as an explanation of the effect of loss of FoxP3. As supporting evidence, we reported modeling of a structural interaction between these two transcription factors in Figure 4D. As the N-terminal region of FoxP3, which consists of the Exon-2 region, had not been solved at structural resolution, we mistakenly used what we deduced to be a FoxP3 related transcription factor, NFAT, in the modeling. The model depicted in Figure 4D therefore did not represent a putative interaction between FoxP3 and STAT3 as labeled, but rather a putative interaction between NFAT and STAT3. Given the incorrect labeling of Figure 4D, the lack of documentation in the paper describing exactly how the modeling was performed, the lack of evidence shown in the paper for the choice of NFAT as the modeling partner, and the limited supporting evidence for a cooperative interaction between FoxP3 and STAT3, the editors have concluded with the corresponding author that the appropriate course of action is to retract the paper. We apologize for any confusion and inconvenience caused to readers.


Assuntos
Neoplasias da Mama/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Moleculares , Fatores de Transcrição
3.
Appl Opt ; 60(31): 9906-9914, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807194

RESUMO

Technological advancement has led to improvement in the design capabilities of astronomical spectrographs, allowing for high-precision spectroscopy, thereby expanding the realms of observational astronomy. High-resolution spectrographs use echelle gratings that operate in higher orders, giving more detailed spectra. Often, curvature and tilted lines are observed in the spectra, arising due to the design trade-offs of the respective spectrographs. Removal of these artifacts can help avoid wrong flux calculation and line centroid position misinterpretation, which can aid in a better prediction of the wavelength calibration model. In this paper we present a postprocessing technique that we developed to correct the observed curvature and tilt in the spectra. We have demonstrated the correction technique on Fabry-Perot and Th-Ar calibration spectra obtained from a Hanle echelle spectrograph, a Magellan Inamori Kyocera Echelle spectrometer, and a X-Shooter spectrograph.

4.
Biochemistry ; 58(15): 1975-1991, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30920805

RESUMO

The nuclease hypersensitive element III1 (NHE III1) upstream c-MYC promoter harbors a transcription-silencing G-quadruplex (Pu27) element. Dynamic turnover of various transcription factors (TFs) across Pu27 to control c-MYC transcription homeostasis is enigmatic. Here, we reveal that native Pu27 evolves truncated G-quadruplex isomers (Pu19, Pu22, Pu24, and Pu25) in cells that are optimal intracellular targets of specific TFs in a sequence- and structure-dependent manner. Nuclear magnetic resonance and isothermal titration calorimetry envisaged that NM23-H2 (nucleoside diphosphate kinase) and nucleolin induce conformational fluctuations in Pu27 to sample specific conformationally restricted conformer(s). Structural investigations revealed that the flanking guanines at 5'-Pu27 control solvent exposure at G-quartets upon NM23-H2 and nucleolin binding driving Pu27 unfolding and folding, respectively. Transient chromatin immunoprecipitations confirmed that NM23-H2 drives the conformation switch to Pu24 that outcompetes nucleolin recruitment. Similarly, nucleolin arrests Pu27 in the Pu22 conformer minimizing NM23-H2 binding at Pu27. hnRNPK (heterogeneous nuclear ribonucleoprotein K) positively regulates NM23-H2 and nucleolin association at Pu27 despite their antagonism. On the basis of these results, we simulated the transcription kinetics in a feed-forward loop in which the transcription output responds to hnRNPK-induced early activation via NM23-H2 association, which favors Pu24 formation at NHE III1 reducing nucleolin occupancy and driving quadruplex unfolding to initiate transcription. NM23-H2 further promotes hnRNPK deposition across NHE III1 altering Pu27 plasticity that finally enriches the nucleolin abundance to drive Pu22 formation and weaken NM23-H2 binding to extinguish transcription. This mechanism involves three positive feedback loops (NM23-H2-hnRNPK, NM23-H2-CNBP, and hnRNPK-nucleolin) and one negative feedback loop (NM23-H2-nucleolin) controlling optimal turnover and residence time of TFs at Pu27 to homeostatically regulate c-MYC transcription.


Assuntos
DNA/química , Quadruplex G , Homeostase , Proteínas Proto-Oncogênicas c-myc/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Isomerismo , Nucleosídeo NM23 Difosfato Quinases/química , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Nucleolina
5.
Apoptosis ; 24(11-12): 958-971, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31641961

RESUMO

Anoikis resistance is an essential property of cancer cells that allow the extra-cellular matrix-detached cells to survive in a suspended state in body fluid in order to metastasize and invade to distant organs. It is known that integrins play an important role in anoikis resistance, but detailed mechanisms are not well understood. Here we report that highly metastatic colon cancer cells showed a higher degree of anoikis resistance than the normal intestinal epithelial cells. These anoikis-resistant cancer cells express high-levels of integrin-α2, ß1, and activated EGFR in the anchorage-independent state than the anchorage-dependent state. In contrast, normal intestinal epithelial cells failed to elevate these proteins. Interestingly, a higher co-association of EGFR with integrin-α2ß1/-α5ß1 was observed on the surface of anoikis-resistant cells. Thus, in the absence of extra-cellular matrix, integrins in association with EGFR activates downstream effectors ERK and AKT and suppress Caspase-3 activation to induce anoikis resistance as was confirmed from the gene-ablation and pharmacological inhibitor studies. Interestingly, these anoikis-resistant cancer cells express high-level of cancer stem cell signatures (CD24, CD44, CD133, EpCAM) and pluripotent stem cell markers (OCT-4, SOX-2, Nanog) as well as drug-resistant pumps (ABCG2, MDR1, MRP1). Altogether, our findings unravel the interplay between integrin-α2ß1/-α5ß1 and EGFR in anoikis resistance and suggest that the resistant cells are cancer initiating or cancer stem cells, which may serve as a promising target to combat metastasis of cancer.


Assuntos
Anoikis , Neoplasias do Colo/metabolismo , Integrina alfa2beta1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anoikis/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrina alfa2beta1/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteínas de Neoplasias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo
6.
J Biol Chem ; 290(7): 3936-49, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25527500

RESUMO

Triple negative breast cancers (TNBC) are among the most aggressive and therapy-resistant breast tumors and currently possess almost no molecular targets for therapeutic options in this horizon. In the present study we discerned the molecular mechanisms of potential interaction between the endoplasmic reticulum (ER) stress response and the MEK/ERK pathway in inducing apoptosis in TNBC cells. Here we observed that induction of ER stress alone was not sufficient to trigger significant apoptosis but simultaneous inhibition of the MEK/ERK pathway enhanced ER stress-induced apoptosis via a caspase-dependent mechanism. Our study also demonstrated nifetepimine, a dihydropyrimidone derivative as a potent anti-cancer agent in TNBC cells. Nifetepimine down-regulated the MEK/ERK pathway in MDAMB-231 and MDAMB-468 cells and resulted in blockage of ER stress-mediated GRP78 up-regulation. Detailed mechanistic studies also revealed that nifetepimine by down-regulating pERK expression also declined the promoter binding activity of TFII-I to the GRP78 promoter and in turn regulated GRP78 transcription. Studies further extended to in vivo Swiss albino and SCID mice models also revalidated the anti-carcinogenic property of nifetepimine. Thus our findings cumulatively suggest that nifetepimine couples two distinct signaling pathways to induce the apoptotic death cascade in TNBC cells and raises the possibility for the use of nifetepimine as a potent anti-cancer agent with strong immune-restoring properties for therapeutic intervention for this group of cancer bearers.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pirimidinonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Técnicas Imunoenzimáticas , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Cancer ; 16: 39, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26810856

RESUMO

BACKGROUND: Cancer metastasis is one of the most common causes of treatment failure and death in cancer patients. It has been acknowledged that aberrant activation of epithelial-to-mesenchymal transition (EMT) program, endows cancer cells with metastatic competence for which E-cadherin switch is a well-established hallmark. Suppression of E-cadherin by its transcriptional repressor Slug is thus a determining factor for EMT. Here, we aimed at discerning (i) the molecular mechanisms that regulate Slug/E-cadherin axis in oncogenic K-ras-expressing non-small cell lung carcinoma (NSCLC) cells, and (ii) the effect of aspirin in modulating the same. METHODS: The migratory behaviour of NSCLC cell line A549 were deciphered by wound healing assay. Further assessment of the molecular mechanisms was done by western blotting, RT-PCR, confocal microscopy, chromatin immunoprecipitation and small interfering RNA (siRNA)-mediated gene silencing. RESULTS: Here we report that in oncogenic K-ras-expressing A549 cells, Ras/ERK downstream Elk-1 forms p-Elk-1-p300 complex that being directly recruited to SLUG promoter acetylates the same to ensure p65NFκB binding for transcriptional up-regulation of Slug, a transcriptional repressor of E-cadherin. Aspirin inhibits EMT and decelerates the migratory potential of A549 cells by down-regulating Slug and thereby up-regulating E-cadherin. Aspirin impedes activation and nuclear translocation of p65NFκB, essential for this transcription factor being available for SLUG promoter binding. As a consequence, Slug transcription is down-regulated relieving A549 cells from Slug-mediated repression of E-cadherin transcription, thereby diminishing the metastatic potential of these oncogenic Ras-expressing NSCLC cells. CONCLUSIONS: Cumulatively, these results signify a crucial role of the anti-inflammatory agent aspirin as a novel negative regulator of epithelial-to-mesenchymal transition thereby suggesting its candidature as a promising tool for deterring metastasis of highly invasive K-ras-expressing NSCLC cells.


Assuntos
Aspirina/administração & dosagem , Caderinas/biossíntese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Fatores de Transcrição/biossíntese , Caderinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição da Família Snail , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética
8.
J Biol Chem ; 289(37): 25431-44, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25086032

RESUMO

The evolution of the cancer cell into a metastatic entity is the major cause of death in patients with cancer. It has been acknowledged that aberrant activation of a latent embryonic program, known as the epithelial-mesenchymal transition (EMT), can endow cancer cells with the migratory and invasive capabilities associated with metastatic competence for which E-cadherin switch is a well-established hallmark. Discerning the molecular mechanisms that regulate E-cadherin expression is therefore critical for understanding tumor invasiveness and metastasis. Here we report that SMAR1 overexpression inhibits EMT and decelerates the migratory potential of breast cancer cells by up-regulating E-cadherin in a bidirectional manner. While SMAR1-dependent transcriptional repression of Slug by direct recruitment of SMAR1/HDAC1 complex to the matrix attachment region site present in the Slug promoter restores E-cadherin expression, SMAR1 also hinders E-cadherin-MDM2 interaction thereby reducing ubiquitination and degradation of E-cadherin protein. Consistently, siRNA knockdown of SMAR1 expression in these breast cancer cells results in a coordinative action of Slug-mediated repression of E-cadherin transcription, as well as degradation of E-cadherin protein through MDM2, up-regulating breast cancer cell migration. These results indicate a crucial role for SMAR1 in restraining breast cancer cell migration and suggest the candidature of this scaffold matrix-associated region-binding protein as a tumor suppressor.


Assuntos
Neoplasias da Mama/genética , Caderinas/biossíntese , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ligação a DNA/biossíntese , Transição Epitelial-Mesenquimal/genética , Proteínas Nucleares/biossíntese , Neoplasias da Mama/patologia , Caderinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Metástase Neoplásica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
9.
J Biol Chem ; 289(42): 29074-85, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25157104

RESUMO

Matrix attachment region (MAR)-binding proteins have been implicated in the transcriptional regulation of host as well as viral genes, but their precise role in HPV-infected cervical cancer remains unclear. Here we show that HPV18 promoter contains consensus MAR element in the LCR and E6 sequences where SMAR1 binds and reinforces HPV18 E6 transcriptional silencing. In fact, curcumin-induced up-regulation of SMAR1 ensures recruitment of SMAR1-HDAC1 repressor complex at the LCR and E6 MAR sequences, thereby decreasing histone acetylation at H3K9 and H3K18, leading to reorientation of the chromatin. As a consequence, c-Fos binding at the putative AP-1 sites on E6 promoter is inhibited. E6 depletion interrupts degradation of E6-mediated p53 and lysine acetyl transferase, Tip60. Tip60, in turn, acetylates p53, thereby restoring p53-mediated transactivation of proapoptotic genes to ensure apoptosis. This hitherto unexplained function of SMAR1 signifies the potential of this unique scaffold matrix-associated region-binding protein as a critical regulator of E6-mediated anti-apoptotic network in HPV18-infected cervical adenocarcinoma. These results also justify the candidature of curcumin for the treatment of HPV18-infected cervical carcinoma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcrição Gênica , Acetilação , Apoptose , Células HeLa , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Transcrição AP-1/metabolismo
10.
J Neurooncol ; 120(1): 19-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25026997

RESUMO

T-cell-mediated immune responses are typically low in conditions of malignant glioma which has been known to cause marked immunesuppression and dysregulate major T-cell signaling molecules. Thus, T-cell-based immunotherapies are currently in vogue in the treatment of malignant glioma. The novel glycopeptide, T11TS/S-LFA-3/S-CD58 has previously been shown by our group to be highly efficacious in glioma abrogation in in vivo and in vitro conditions. This glycopeptide ligands to the costimulatory CD2 molecule on T-cells, causing profound immune stimulation leading to glioma abrogation, suggesting probable involvement of T11TS in modulation of the T-cell signaling pathway. The present study offers a multi-targeted approach towards repair of some of the key components of the immunological synapse at the T-cell-APC interface and is therefore the first of its kind to offer a holistic model of restoration of immunological synapse components so as to trigger T-cells towards activation against glioma. The study thus indicates that the totally dysregulated molecular events at the immunological synapse in glioma are restored back to normal levels with the administration of T11TS, which finally culminates in glioma abrogation. The present study thus delineates an important T-cell signaling approach whereby T11TS acts as an anti-neoplastic agent, thus helping to chart out newer avenues in the fight against gliomas.


Assuntos
Antígenos CD2/metabolismo , Antígenos CD58/metabolismo , Glioma/prevenção & controle , Glicopeptídeos/uso terapêutico , Sinapses Imunológicas/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Neoplasias Encefálicas/induzido quimicamente , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/prevenção & controle , Antígenos CD2/imunologia , Antígenos CD58/imunologia , Etilnitrosoureia/toxicidade , Feminino , Citometria de Fluxo , Imunofluorescência , Glioma/induzido quimicamente , Glioma/imunologia , Ativação Linfocitária , Masculino , Camundongos , Mutagênicos/toxicidade , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia
11.
ACS Chem Biol ; 19(7): 1433-1439, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38959478

RESUMO

Most of the human cancers are dependent on telomerase to extend the telomeres. But ∼10% of all cancers use a telomerase-independent, homologous recombination mediated pathway called alternative lengthening of telomeres (ALT). Due to the poor prognosis, ALT status is not being considered yet in the diagnosis of cancer. No such specific treatment is available to date for ALT positive cancers. ALT positive cancers are dependent on replication stress to deploy DNA repair pathways to the telomeres to execute homologous recombination mediated telomere extension. SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1) is associated with the ALT telomeres to resolve replication stress thus providing telomere stability. Thus, the dependency on replication stress regulatory factors like SMARCAL1 made it a suitable therapeutic target for the treatment of ALT positive cancers. In this study, we found a significant downregulation of SMARCAL1 expression by stabilizing the G-quadruplex (G4) motif found in the promoter of SMARCAL1 by potent G4 stabilizers, like TMPyP4 and BRACO-19. SMARCAL1 downregulation led toward the increased localization of PML (promyelocytic leukemia) bodies in ALT telomeres and triggered the formation of APBs (ALT-associated promyelocytic leukemia bodies) in ALT positive cell lines, increasing telomere replication stress and DNA damage at a genomic level. Induction of replication stress and hyper-recombinogenic phenotype in ALT positive cells mediated by G4 stabilizing molecules already highlighted their possible application as a new therapeutic window to target ALT positive tumors. In accordance with this, our study will also provide a valuable insight toward the development of G4-based ALT therapeutics targeting SMARCAL1.


Assuntos
DNA Helicases , Quadruplex G , Neoplasias , Regiões Promotoras Genéticas , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Neoplasias/genética , Linhagem Celular Tumoral , Replicação do DNA , Homeostase do Telômero
12.
J Biol Chem ; 287(39): 32881-96, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22851172

RESUMO

Multiple mechanisms have been proposed by which tumors induce T cell apoptosis to circumvent tumor immune-surveillance. Although sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) have long been known to regulate intracellular Ca(2+) homeostasis, few studies have examined the role of SERCA in processes of T lymphocyte survival and activation. In this context it remains largely unexplored as to how tumors jeopardize SERCA function to disable T cell-mediated anti-tumor immunity. Here, we show that human CD4(+) T cells in the presence of tumor conditions manifested an up-regulation of SERCA3 expression that resulted in development of endoplasmic reticulum stress leading to CD4(+) T cell apoptosis. Prostaglandin E(2) produced by the tumor cell plays a critical role in up-regulating SERCA3 by enhancing the binding of its transcription factor Sp1. Gene manipulation and pharmacological approaches further established that an increase in SERCA expression also resulted in subsequent inhibition of PKCα and -θ and retention of NFκB in the cytosol; however, down-modulation of SERCA3 expression by a dihydropyrimidone derivative, ethyl-4-(3-nitro)-phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (nifetepimine), protected the CD4(+) T cells from tumor-induced apoptosis. In fact, nifetepimine-mediated restoration of PKC activity resulted in nuclear translocation of p65NFκB, thereby ensuring its survival. Studies further undertaken in a tumor-bearing mice model revalidated the immunoprotective role of nifetepimine. Our present study thus strongly suggests that imbalance in cellular calcium homeostasis is an important factor leading to CD4(+) T cell death during cancer and holds promise that nifetepimine may have the potential to be used as an immunorestoring agent in cancer bearers.


Assuntos
Neoplasias da Mama/enzimologia , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Fatores Imunológicos/farmacologia , Proteínas de Neoplasias/metabolismo , Pirimidinonas/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Microambiente Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos T CD4-Positivos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Dinoprostona/genética , Dinoprostona/imunologia , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Transplante de Neoplasias , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/imunologia , Proteína Quinase C-alfa/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição Sp1/metabolismo , Transplante Heterólogo , Microambiente Tumoral/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
13.
Apoptosis ; 18(5): 589-604, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23329180

RESUMO

Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.


Assuntos
Caspase 8/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-ret/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Biflavonoides/farmacologia , Carcinoma Neuroendócrino , Caspase 8/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , DNA Complementar , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Transfecção , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Biometals ; 26(3): 517-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23733180

RESUMO

Drug induced toxicity and drug resistance are the major impediments to successful application of cancer chemotherapy. Therefore, selective targeting of the key biochemical events of the malignant cells may have a great therapeutic potential in specifically kill the cancer cells. We have evaluated in vitro the cytotoxic efficacy of a previously reported copper complex viz. copper N-(2-hydroxy acetophenone) glycinate (CuNG) on different drug sensitive and resistant cancer cell lines by MTT, annexin V positivity and caspase 3 activation assays. We have also investigated the underlying signalling events in CuNG mediated apoptosis of cancer cells by Western blotting technique. We have found that CuNG preferentially induces apoptosis to malignant cells irrespective of drug sensitivity and spares the normal cells. Our studies disclose that CuNG causes cellular redox imbalance in cancer cells through depletion of intracellular GSH level. CuNG mediated depletion of intracellular GSH level induces mitochondrial superoxide generation, which detaches cyto C from mitochondrial membrane through lipid peroxidation. The detached cyto C then release into the extra mitochondrial milieu in Bax mediated pathway where CuNG facilitates the binding of Bax through dissociation of hexokinase II from mitochondrial membrane. The present study opens the possibility of developing effective chemotherapeutic drugs by synthesizing numerous chemical compounds capable of targeting cellular redox environment and thus specifically kills cancer cells of broad spectrum.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Quelantes/farmacologia , Glutationa/metabolismo , Glicina/análogos & derivados , Compostos Organometálicos/farmacologia , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicina/química , Glicina/farmacologia , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células K562 , Camundongos , Células NIH 3T3 , Compostos Organometálicos/química , Relação Estrutura-Atividade
15.
BMC Complement Altern Med ; 13: 230, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24053127

RESUMO

BACKGROUND: Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. However, the molecular mechanisms underneath the anti-cancer effect, if any, of these medicines have still remained unexplored. To this end we attempted to evaluate the efficacy of calcarea carbonica, a homeopathic medicine, as an anti-cancer agent and to delineate the detail molecular mechanism(s) underlying calcerea carbonica-induced tumor regression. METHODS: To investigate and delineate the underlying mechanisms of calcarea carbonica-induced tumor regression, Trypan blue dye-exclusion test, flow cytometric, Western blot and reverse transcriptase-PCR techniques were employed. Further, siRNA transfections and inhibitor studies were used to validate the involvement of p53 pathway in calcarea carbonica-induced apoptosis in cancer cells. RESULTS: Interestingly, although calcarea carbonica administration to Ehrlich's ascites carcinoma (EAC)- and Sarcoma-180 (S-180)-bearing Swiss albino mice resulted in 30-35% tumor cell apoptosis, it failed to induce any significant cell death in ex vivo conditions. These results prompted us to examine whether calcarea carbonica employs the immuno-modulatory circuit in asserting its anti-tumor effects. Calcarea carbonica prevented tumor-induced loss of effector T cell repertoire, reversed type-2 cytokine bias and attenuated tumor-induced inhibition of T cell proliferation in tumor-bearing host. To confirm the role of immune system in calcarea carbonica-induced cancer cell death, a battery of cancer cells were co-cultured with calcarea carbonica-primed T cells. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells by calcarea carbonica i.e., (1) activation of the immune system of the host; and (2) induction of cancer cell apoptosis via immuno-modulatory circuit in p53-dependent manner by down-regulating Bcl-2:Bax ratio. Bax up-regulation resulted in mitochondrial transmembrane potential loss and cytochrome c release followed by activation of caspase cascade. Knocking out of p53 by RNA-interference inhibited calcarea carbonica-induced apoptosis thereby confirming the contribution of p53. CONCLUSION: These observations delineate the significance of immuno-modulatory circuit during calcarea carbonica-mediated tumor apoptosis. The molecular mechanism identified may serve as a platform for involving calcarea carbonica into immunotherapeutic strategies for effective tumor regression.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carbonato de Cálcio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/química , Neoplasias da Mama , Carbonato de Cálcio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Immunol ; 14: 1295257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035101

RESUMO

Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.


Assuntos
Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Macrófagos , Neovascularização Patológica , Recidiva
17.
Discov Oncol ; 14(1): 220, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038865

RESUMO

Cancer stem cells (CSCs), being the primary contributors in tumor initiation, metastasis, and relapse, ought to have seminal roles in evasion of immune surveillance. Tumor-promoting CD4+CD25+FOXP3+ T-regulatory cells (Tregs) have been described to abolish host defense mechanisms by impeding the activities of other immune cells including effector T cells. However, whether CSCs can convert effector T cells to immune-suppressive Treg subset, and if yes, the mechanism underlying CSC-induced Treg generation, are limitedly studied. In this regard, we observed a positive correlation between breast CSC and Treg signature markers in both in-silico and immunohistochemical analyses. Mirroring the conditions during tumor initiation, low number of CSCs could successfully generate CD4+CD25+FOXP3+ Treg cells from infiltrating CD4+ T lymphocytes in a contact-independent manner. Suppressing the proliferation potential as well as IFNγ production capacity of effector T cells, these Treg cells might be inhibiting antitumor immunity, thereby hindering immune-elimination of CSCs during tumor initiation. Furthermore, unlike non-stem cancer cells (NSCCs), CSCs escaped doxorubicin-induced apoptosis, thus constituting major surviving population after three rounds of chemotherapy. These drug-survived CSCs were also able to generate CD4+CD25+FOXP3+ Treg cells. Our search for the underlying mechanism further unveiled the role of CSC-shed immune-suppressive cytokine TGFß, which was further increased by chemotherapy, in generating tumor Treg cells. In conclusion, during initiation as well as after chemotherapy, when NSCCs are not present in the tumor microenvironment, CSCs, albeit present in low numbers, generate immunosuppressive CD4+CD25+FOXP3+ Treg cells in a contact-independent manner by shedding high levels of immune-suppressive Treg-polarizing cytokine TGFß, thus escaping immune-elimination and initiating the tumor or causing tumor relapse.

18.
J Biol Chem ; 286(49): 42232-42247, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22013068

RESUMO

Breast cancer cells often develop multiple mechanisms of drug resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. High constitutive activation of NFκB has been found in different cancers, creating an environment conducive for chemotherapeutic resistance. Here we report that doxorubicin-induced SMAR1-dependent transcriptional repression and SMAR1-independent degradation of IkBα resulted in nuclear translocation of p65NFκB and its association with p300 histone acetylase and subsequent transcription of Bcl-2 to impart protective response in drug-resistant cells. Consistently SMAR1-silenced drug-resistant cells exhibited IkBα-mediated inhibition of p65NFκB and induction of p53-dependent apoptosis. Interestingly, curcumin pretreatment of drug-resistant cells alleviated SMAR1-mediated p65NFκB activation and hence restored doxorubicin sensitivity. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic death cascade. Importantly, promyelocyte leukemia-mediated SMAR1 sequestration that relieved the repression of apoptosis-inducing genes was indispensable for such chemo-sensitizing ability of curcumin. A simultaneous decrease in drug-induced systemic toxicity by curcumin might also have enhanced the efficacy of doxorubicin by improving the intrinsic defense machineries of the tumor-bearer. Overall, the findings of this preclinical study clearly demonstrate the effectiveness of curcumin to combat doxorubicin-resistance. We, therefore, suggest curcumin as a potent chemo-sensitizer to improve the therapeutic index of this widely used anti-cancer drug. Taken together, these results suggest that curcumin can be developed into an adjuvant chemotherapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Curcumina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Camundongos , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo
19.
Opt Lett ; 37(9): 1523-5, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22555725

RESUMO

A long-wavelength IR broadband reflector is demonstrated using a high-index-contrast subwavelength grating based on a Si/SiO2 system. The field response has been computationally and experimentally verified to exhibit broadband reflectance in the spectral range of 13-16 µm with Δλ/λ=18.5% for reflectance >70%. The gratings exhibit incident field polarization dependence with an average extinction ratio of 1:1.6.

20.
Mol Cell Biochem ; 364(1-2): 309-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22258826

RESUMO

One of the major reasons for multidrug resistance (MDR) in cancer is the overexpression of P-glycoprotein (P-gp, ABCB1), a drug efflux pump. A novel copper complex, namely, copper (II) N-(2-hydroxyacetophenone) glycinate (CuNG) previously synthesized and characterized by the authors had been tested in this study. In a cell-based assay system with human MDR1 cDNA overexpressed mouse fibroblast NIH MDR1-G185 cell line, we demonstrated that this metal complex can directly interact with this transporter. As CuNG increased cellular accumulation of doxorubicin in P-gp-expressing cells, we presumed that of CuNG may be potential to reverse P-gp-mediated drug resistance probably by lowering the P-gp expression at the protein as well as mRNA level. Interestingly, our studies on UIC2 (a conformation sensitive monoclonal antibody) binding assay indicated the direct interaction of CuNG with P-gp. However, CuNG did not compete for the substrate binding as photoaffinity labeling of P-gp with a substrate analog [(125)I] iodoarylazidoprazosin ([(125)I] IAAP) showed approximately twofold increase in [(125)I] IAAP binding in presence of CuNG. In vitro study showed that CuNG significantly stimulated P-gp-specific ATPase activity in isolated membrane preparations from NIH MDR1-G185 cells. This result further confirmed the CuNG-P-gp direct interaction. This study also demonstrated that CuNG has a drug interaction site different from verapamil-, vinblastine- and progesterone-binding sites on P-gp. Taken together, this is the first report of molecular interaction of any Schiff's base metal chelate CuNG with human P-gp. This information may be useful to design more efficacious nontoxic metal-based drugs as MDR-reversing agents.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quelantes/farmacologia , Cobre , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Quelantes/química , Doxorrubicina/farmacologia , Fibroblastos/metabolismo , Glicina/análogos & derivados , Glicina/química , Glicina/farmacologia , Humanos , Camundongos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA