Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Derm Venereol ; 99(2): 196-205, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320872

RESUMO

Psoriasis is a common immune-mediated disease resulting from altered cross-talk between keratinocytes and immune cells. Previous transcriptomic studies have identified thousands of deregulated genes in psoriasis skin; however, the transcriptomic changes confined to the epidermal compartment remained poorly characterized. The aim of this study was to characterize the transcriptomic landscape of psoriatic keratinocytes, using sorted CD45neg epidermal cells. Genes with functions in innate immunity, type I interferon response, cell cycle and keratinization were enriched among deregulated genes in psoriatic keratinocytes. Gene set enrichment analysis indicated the dominance of interleukin (IL)-22/IL-17A signatures in the epidermal psoriasis-signature. A set of deregulated genes overlapped with psoriasis-associated genetic regions, suggesting that genetic variations affecting gene expression in keratinocytes contribute to susceptibility to psoriasis. Several psoriasis-susceptibility genes, which were previously believed to be expressed preferentially or exclusively in immune cells, were identified as having altered expression in psoriatic keratinocytes. These results highlight the role of keratinocytes in the pathogenesis of psoriasis, and indicate that both genetic factors and an inflammatory microenvironment contribute to epidermal alterations in psoriasis.


Assuntos
Ciclo Celular/genética , Epiderme/metabolismo , Imunidade Inata/genética , Queratinócitos/metabolismo , Queratinas/metabolismo , Psoríase/genética , Transcriptoma , Adulto , Idoso , Estudos de Casos e Controles , Microambiente Celular , Epiderme/imunologia , Epiderme/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Queratinócitos/imunologia , Queratinócitos/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Adulto Jovem , Interleucina 22
2.
J Invest Dermatol ; 141(8): 1922-1931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33766507

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a malignant neoplasm of the skin resulting from the accumulation of somatic mutations due to solar radiation. cSCC is one of the fastest increasing malignancies, and it represents a particular problem among immunosuppressed individuals. MicroRNAs are short noncoding RNAs that regulate the expression of protein-coding genes at the post-transcriptional level. In this study, we identify miR-130a to be downregulated in cSCC compared to healthy skin and precancerous lesions (actinic keratosis). Moreoever, we show that its expression is regulated at the transcriptional level by HRAS and MAPK signaling pathway. We demonstrate that overexpession of miR-130a suppresses long-term capacity of growth, cell motility and invasion ability of human cSCC cell lines. We report that miR-130a suppresses the growth of cSCC xenografts in mice. Mechanistically, miR-130a directly targets ACVR1 (ALK2), and changes in miR-130a levels result in the decreased activity of the BMP/SMAD pathway through ACVR1. These data reveal a link between activated MAPK signaling and decreased expression of miR-130a, which acts as a tumor-suppressor microRNA in cSCC and contribute to a better understanding of the molecular processes during malignant transformation of epidermal keratinocytes.


Assuntos
Receptores de Ativinas Tipo I/genética , Carcinoma de Células Escamosas/genética , Ceratose Actínica/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Animais , Biópsia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Queratinócitos/patologia , Ceratose Actínica/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 10(1): 3637, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32108138

RESUMO

Cutaneous Squamous Cell Carcinoma (cSCC) is the most common and fastest-increasing cancer with metastatic potential. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression. To identify mRNAs, lncRNAs and circRNAs, which can be involved in cSCC, RNA-seq was performed on nine cSCCs and seven healthy skin samples. Representative transcripts were validated by NanoString nCounter assays using an extended cohort, which also included samples from pre-cancerous skin lesions (actinic keratosis). 5,352 protein-coding genes, 908 lncRNAs and 55 circular RNAs were identified to be differentially expressed in cSCC. Targets of 519 transcription factors were enriched among differentially expressed genes, 105 of which displayed altered level in cSCCs, including fundamental regulators of skin development (MYC, RELA, ETS1, TP63). Pathways related to cell cycle, apoptosis, inflammation and epidermal differentiation were enriched. In addition to known oncogenic lncRNAs (PVT1, LUCAT1, CASC9), a set of skin-specific lncRNAs were were identified to be dysregulated. A global downregulation of circRNAs was observed in cSCC, and novel skin-enriched circRNAs, circ_IFFO2 and circ_POF1B, were identified and validated. In conclusion, a reference set of coding and non-coding transcripts were identified in cSCC, which may become potential therapeutic targets or biomarkers.


Assuntos
Carcinoma de Células Escamosas/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Neoplasias Cutâneas/genética , Carcinoma de Células Escamosas/metabolismo , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Neoplasias Cutâneas/metabolismo , Transcriptoma
4.
J Invest Dermatol ; 138(4): 882-892, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29104160

RESUMO

Melanoma is one of the deadliest human cancers with limited therapeutic options. MicroRNAs are a class of short noncoding RNAs regulating gene expression at the post-transcriptional level. To identify important miRNAs in melanoma, we compared the miRNome of primary and metastatic melanomas in The Cancer Genome Atlas dataset and found lower miR-203 abundance in metastatic melanoma. Lower level of miR-203 was associated with poor overall survival in metastatic disease. We found that the methylation levels of several CpGs in the MIR203 promoter negatively correlated with miR-203 expression and that treatment with the demethylating agent 5-aza-2-deoxycytidine induced miR-203 expression, which was associated with demethylation of the promoter CpGs, in melanoma cell lines. In vitro, there was a decreased expression of miR-203 in melanoma cell lines in comparison with primary melanocytes. Ectopic overexpression of miR-203 suppressed cell motility, colony formation, and sphere formation as well as the angiogenesis-inducing capacity of melanoma cells. In vivo, miR-203 inhibited xenograft tumor growth and reduced lymph node and lung metastasis. SLUG was shown as a target of miR-203, and knockdown of SLUG recapitulated the effects of miR-203, whereas its restoration was able to reverse the miR-203-mediated suppression of cell motility. These results establish a role for miR-203 as a tumor suppressor in melanoma which suppresses both early and late steps of metastasis. Hence, restoration of miR-203 has therapeutic potential in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , RNA Neoplásico/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Melanoma/metabolismo , Melanoma/secundário , MicroRNAs/biossíntese , Regiões Promotoras Genéticas , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA