Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(38)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34116521

RESUMO

One-step evaporative jamming of colloidal silica particles in contact-free spray droplets resulted in well-defined powder micro-granules with interstitial nanopores. This paper reports the anomalous freezing behaviour of confined water in the microspheres synthesized using spray drying. It has been revealed that the freezing point of water in these microspheres gets significantly lowered (∼-45 °C) owing to the confinement effect. Thermoporometry results are corroborated with the structural details obtained using complementary techniques of gas adsorption measurements and small-angle x-ray scattering.

2.
Langmuir ; 35(45): 14492-14504, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618038

RESUMO

Photoelectrochemical performance of bismuth vanadate (BiVO4) photoanode is limited by poor charge separation and transport properties. The roles of carbon nanotube, reduced graphene oxide, or graphitic carbon nitride in BiVO4 composite photoanode were investigated toward enhancing light absorption and reducing overall impedance during photoelectrochemical water oxidation process. X-ray diffraction and Tauc analysis showed that BiVO4 retains its monoclinic phase, n-type semiconductor nature, and band gap in all carbon nanomaterials-incorporated composite photoanodes. It was observed that the carbon nanomaterials incorporation in BiVO4 film increases its surface porosity, ultimately leading to enhanced light absorption. The BiVO4 photoanode with reduced graphene oxide and graphitic carbon nitride showed same bulk charge separation efficiency, whereas the latter showed better charge transfer. It was found that the graphitic carbon nitride formed composite with BiVO4 to provide enhanced light absorption efficiency, i.e., 89% in 350-505 nm range. The BiVO4 with graphitic carbon nitride photoanode showed the best performance with a photocurrent of 2.2 mA cm-2, charge separation efficiency of 67%, and photocurrent of 4.0 mA cm-2 with cobalt-phosphate surface catalyst at 1.23 VRHE for water oxidation under 1 sun illumination. The Mott-Schottky and impedance measurements confirmed the shift of conduction band position toward hydrogen reduction potential and reduction in film resistance, respectively, with carbon nanomaterials addition, and the shift was most significant for graphitic carbon nitride. It is concluded that by concomitant formation of junction during photoanode fabrication between carbon nanomaterials, BiVO4, and fluorine-doped tin oxide glass substrate, better charge separation, transport, and light absorption can be achieved.

3.
ACS Omega ; 8(35): 32204-32220, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692220

RESUMO

Various nanomaterials have been envisaged mainly through batch studies for environmental remediation application. The real utilization of these new generation adsorbents in large scale pose a difficulty due to its low density and small size which makes it difficult for isolation after application. In this context, nanoadsorbents polymer composite beads can be seen as a way out. Here, functionalized CNTs (carbon nanotubes) have been fabricated into micro beads with sodium alginate. The alginate-functionalized CNT (Alg-f-CNT) beads were then comprehensively evaluated for batch and fixed-bed column separation of divalent mercury ions from an aqueous medium. The effects of process parameters such as pH, contact time, feed Hg2+ concentration, and temperature were studied. Simulation of the experimental data suggested that adsorption is an endothermic spontaneous process which follows the pseudo-second-order kinetic and Langmuir isotherm model. The desorption of the Hg2+ ion from used adsorbent was possible with 1 M HNO3. The breakthrough curves at different process parameters were investigated during fixed-bed column separation and found to be in good agreement with Thomas model. The regeneration and reusability of the adsorbent were tested up to five cycles without a significant decrease in the removal performance. Density functional theory studies revealed stronger interaction of Alg-f-CNT with Hg compared to free alginic acid and established the role of carboxyl and oxo groups present in the adsorbent in the coordination of the Hg2+ ions. The experimental results demonstrate that functionalized CNT-encapsulated alginate beads are a promising alternate material, which can be used to remove mercury in the fixed-bed column mode of the operation.

4.
ACS Omega ; 8(7): 6708-6719, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844608

RESUMO

Lightweight and flexible gas sensors are essentially required for the fast detection of toxic gases to pass on the early warning to deter accident situations caused by gas leakage. In view of this, we have fabricated a thin paper-like free-standing, flexible, and sensitive carbon nanotube (CNT) aerogel gas sensor. The CNT aerogel film synthesized by the floating catalyst chemical vapor deposition method consists of a tiny network of long CNTs and ∼20% amorphous carbon. The pores and defect density of the CNT aerogel film were tuned by heating at 700 °C to obtain a sensor film, which showed excellent sensitivity for toxic NO2 and methanol gas in the concentration range of 1-100 ppm with a remarkable limit of detection ∼90 ppb. This sensor has consistently responded to toxic gas even after bending and crumpling the film. Moreover, the film heat-treated at 900 °C showed a lower response with opposite sensing characteristics due to switching of the semiconductor nature of the CNT aerogel film to n-type from p-type. The annealing temperature-based adsorption switching can be related to a type of carbon defect in the CNT aerogel film. Therefore, the developed free-standing, highly sensitive, and flexible CNT aerogel sensor paves the way for a reliable, robust, and switchable toxic gas sensor.

5.
PNAS Nexus ; 2(3): pgad031, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909823

RESUMO

The Development of reliable and field-compatible detection methods is essential to monitoring and controlling the spread of any global pandemic. We herein report a novel anti-RNA:DNA hybrid (anti-RDH) antibody-based biosensor for visual, colorimetric lateral flow assay, using gold nanoparticles, coupled with transcription-mediated-isothermal-RNA-amplification (TMIRA) for specific and sensitive detection of viral RNA. We have demonstrated its utility for SARS-CoV-2 RNA detection. This technique, which we have named RDH-LFA (anti-RNA:DNA hybrid antibody-based lateral flow assay), exploits anti-RDH antibody for immunocapture of viral RNA hybridized with specific DNA probes in lateral flow assay. This method uses biotinylated-oligonucleotides (DNAB) specific to SARS-CoV-2 RNA (vRNA) to generate a vRNA-DNAB hybrid. The biotin-tagged vRNA-DNAB hybrid molecules bind to streptavidin conjugated with gold nanoparticles. This hybrid complex is trapped by the anti-RDH antibody immobilized on the nitrocellulose membrane resulting in pink color signal leading to visual naked-eye detection in 1 minute. Combining RDH-LFA with isothermal RNA amplification (TMIRA) significantly improves the sensitivity (LOD:10 copies/µl) with a total turnaround time of an hour. More importantly, RDH-LFA coupled with the TMIRA method showed 96.6% sensitivity and 100% specificity for clinical samples when compared to a commercial gold standard reverse-transcription quantitative polymerase-chain-reaction assay. Thus, the present study reports a rapid, sensitive, specific, and simple method for visual detection of viral RNA, which can be used at the point-of-care without requiring sophisticated instrumentation.

6.
Biosens Bioelectron ; 191: 113480, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242998

RESUMO

We report the development of an ultrasensitive label-free DNA biosensor device with fully integrated standalone carbon nanotube (CNT) aerogel electrode. The multi-directional tenuous network of clustered CNT embedding into the CNT aerogel electrode demonstrates linear ohmic and near isotropic electrical properties, thereby providing high sensitivity for nucleic acid detection. Using this device, the target DNA hybridization is detected by a quantifiable change in the electrochemical impedance, with a distinct response to the single-stranded probe alone or double-stranded target-probe complex. The target DNA is specifically detected with limit of detection (LoD) of 1 pM with a turnaround time of less than 20 min, which is unprecedented for a miniaturized CNT aerogel sensor and impedance spectroscopy without an intermediate DNA amplification step. Moreover, this system is able to differentiate between the closely related target sequences by the distinct impedance response rendering it highly specific. To the best of our knowledge, this is the first report showing the use of standalone bare CNT aerogel electrode without any substrate support, coupled with electrochemical impedance spectroscopy, for the detection of DNA hybridization. Altogether, the results show that our system is fast, sensitive and specific for label-free rapid direct DNA detection, promising a novel avenue for bio-sensing.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , DNA/genética , Técnicas Eletroquímicas , Limite de Detecção , Hibridização de Ácido Nucleico
7.
ACS Appl Mater Interfaces ; 12(39): 44345-44359, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32864953

RESUMO

The interface of transition-metal dichalcogenides (TMDCs) and high-k dielectric transition-metal oxides (TMOs) had triggered umpteen discourses because of the indubitable impact of TMOs in reducing the contact resistances and restraining the Fermi-level pinning for the metal-TMDC contacts. In the present work, we focus on the unresolved tumults of large-area TMDC/TMO interfaces, grown by adopting different techniques. Here, on a pulsed laser-deposited MoS2 thin film, a layer of TiO2 is grown by atomic layer deposition (ALD) and pulsed laser deposition (PLD). These two different techniques emanate the layer of TiO2 with different crystallinities, thicknesses, and interfacial morphologies, subsequently influencing the electronic and optical properties of the interfaces. Contrasting the earlier reports of n-type doping at the exfoliated MoS2/TiO2 interfaces, the large-area MoS2/anatase-TiO2 films had realized a p-type doping of the underneath MoS2, manifesting a boost in the extent of p-type doping with increasing thickness of TiO2, as emerged from the X-ray photoelectron spectra. Density functional analysis of the MoS2/anatase-TiO2 interfaces, with pristine and interfacial defect configurations, could correlate the interdependence of doping and the terminating atomic surface of TiO2 on MoS2. The optical properties of the interface, encompassing photoluminescence, transient absorption and z-scan two-photon absorption, indicate the presence of defect-induced localized midgap levels in MoS2/TiO2 (PLD) and a relatively defect-free interface in MoS2/TiO2 (ALD), corroborating nicely with the corresponding theoretical analysis. From the investigation of optical properties, we indicate that the MoS2/TiO2 (PLD) interface may act as a promising saturable absorber, having a significant nonlinear response for the sub-band-gap excitations. Moreover, the MoS2/TiO2 (PLD) interface had exemplified better phototransport properties. A potential application of MoS2/TiO2 (PLD) is demonstrated by the fabrication of a p-type phototransistor with the ionic-gel top gate. This endeavor to analyze and perceive the MoS2/TiO2 interface establishes the prospectives of large-area interfaces in the field of optics and optoelectronics.

8.
Colloids Surf B Biointerfaces ; 154: 421-428, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388528

RESUMO

Synthesis and characterization of nano-structured porous granules, with fairly defined morphology and porosity, is crucial because such granules are widely utilized for various technological applications. However, an easy, one-step, economic synthesis protocol for large scale production is extremely desirable. In the present work, we have reported the synthesis and characterization of the nano-structured micro-granules using aerosol drying of bi-colloidal suspension of nano-silica and milk. Removal of soft organic component from the granules results in formation of meso and macro pores with moderate specific surface area. Granule morphology and porosity depends strongly on the concentration ratio of the individual components in the drying aerosol as well as the interaction between them.


Assuntos
Leite/química , Nanoestruturas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Aerossóis , Animais , Coloides , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Suspensões
9.
J Chromatogr A ; 1384: 37-43, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25660520

RESUMO

Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation.


Assuntos
Disprósio/isolamento & purificação , Concentração de Íons de Hidrogênio , Polímeros/química , Álcool de Polivinil/química , Sulfonas/química , Água/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA