Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
FASEB J ; 37(7): e23018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310411

RESUMO

Early detection, accurate monitoring, and therapeutics are major problems in non-small-cell lung cancer (NSCLC) patients. We identified genomic copy number variation of a unique panel of 40 mitochondria-targeted genes in NSCLCs (GEOGSE #29365). Validation of mRNA expression of these molecules revealed an altered panel of 34 genes in lung adenocarcinomas (LUAD) and 36 genes in lung squamous cell carcinomas (LUSC). In the LUAD subtype (n = 533), we identified 29 upregulated and 5 downregulated genes, while in the LUSC subtype (n = 502), a panel of 30 upregulated and 6 downregulated genes were discovered. The majority of these genes are associated with mitochondrial protein transport, ferroptosis, calcium signaling, metabolism, OXPHOS function, TCA cycle, apoptosis, and MARylation. Altered mRNA expression of SLC25A4, ACSF2, MACROD1, and GCAT was associated with poor survival of the NSCLC patients. Progressive loss of SLC25A4 protein expression was confirmed in NSCLC tissues (n = 59), predicting poor survival of the patients. Forced overexpression of SLC25A4 in two LUAD cell lines inhibited their growth, viability, and migration. A significant association of the altered mitochondrial pathway genes with LC subtype-specific classical molecular signatures was observed, implicating the existence of nuclear-mitochondrial cross-talks. Key alteration signatures shared between LUAD and LUSC subtypes including SLC25A4, ACSF2, MACROD1, MDH2, LONP1, MTHFD2, and CA5A could be helpful in developing new biomarkers and therapeutics.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Sinalização do Cálcio , DNA Mitocondrial , RNA Mensageiro , Proteínas Mitocondriais/genética , Proteases Dependentes de ATP
2.
Methods ; 203: 594-603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33045362

RESUMO

COVID-19 pandemic posed an unprecedented threat to global public health and economies. There is no effective treatment of the disease, hence, scaling up testing for rapid diagnosis of SARS-CoV-2 infected patients and quarantine them from healthy individuals is one the best strategies to curb the pandemic. Establishing globally accepted easy-to-access diagnostic tests is extremely important to understanding the epidemiology of the present pandemic. While nucleic acid based tests are considered to be more sensitive with respect to serological tests but present gold standard qRT-PCR-based assays possess limitations such as low sample throughput, requirement for sophisticated reagents and instrumentation. To overcome these shortcomings, recent efforts of incorporating LAMP-based isothermal detection, and minimizing the number of reagents required are on rise. CRISPR based novel techniques, when merge with isothermal and allied technologies, promises to provide sensitive and rapid detection of SARS-CoV-2 nucleic acids. Here, we discuss and present compilation of state-of-the-art detection techniques for COVID-19 using CRISPR technology which has tremendous potential to transform diagnostics and epidemiology.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768800

RESUMO

Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Núcleo Celular/metabolismo , Citosol/metabolismo , Resposta a Proteínas não Dobradas
4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901912

RESUMO

Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Androgênios , Genoma , Núcleo Celular/patologia , Mitocôndrias/genética
5.
Semin Cancer Biol ; 77: 99-109, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34418576

RESUMO

Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.


Assuntos
Biomarcadores Tumorais , Carcinoma Epitelial do Ovário , Resistencia a Medicamentos Antineoplásicos , Biópsia Líquida , Animais , Antineoplásicos , Gerenciamento Clínico , Feminino , Humanos , Compostos de Platina
6.
J Cell Physiol ; 237(11): 4049-4078, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074903

RESUMO

Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.


Assuntos
Doenças Mitocondriais , Neoplasias , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fosforilação Oxidativa , Neoplasias/patologia , Apoptose
7.
BMC Genomics ; 23(1): 704, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243697

RESUMO

BACKGROUND: The Mycobacterium genus encompasses at least 192 named species, many of which cause severe diseases such as tuberculosis. Non-tuberculosis mycobacteria (NTM) can also infect humans and animals. Some are of emerging concern because they show high resistance to commonly used antibiotics while others are used and evaluated in bioremediation or included in anticancer vaccines. RESULTS: We provide the genome sequences for 114 mycobacterial type strains and together with 130 available mycobacterial genomes we generated a phylogenetic tree based on 387 core genes and supported by average nucleotide identity (ANI) data. The 244 genome sequences cover most of the species constituting the Mycobacterium genus. The genome sizes ranged from 3.2 to 8.1 Mb with an average of 5.7 Mb, and we identified 14 new plasmids. Moreover, mycobacterial genomes consisted of phage-like sequences ranging between 0 and 4.64% dependent on mycobacteria while the number of IS elements varied between 1 and 290. Our data also revealed that, depending on the mycobacteria, the number of tRNA and non-coding (nc) RNA genes differ and that their positions on the chromosome varied. We identified a conserved core set of 12 ncRNAs, 43 tRNAs and 18 aminoacyl-tRNA synthetases among mycobacteria. CONCLUSIONS: Phages, IS elements, tRNA and ncRNAs appear to have contributed to the evolution of the Mycobacterium genus where several tRNA and ncRNA genes have been horizontally transferred. On the basis of our phylogenetic analysis, we identified several isolates of unnamed species as new mycobacterial species or strains of known mycobacteria. The predicted number of coding sequences correlates with genome size while the number of tRNA, rRNA and ncRNA genes does not. Together these findings expand our insight into the evolution of the Mycobacterium genus and as such they establish a platform to understand mycobacterial pathogenicity, their evolution, antibiotic resistance/tolerance as well as the function and evolution of ncRNA among mycobacteria.


Assuntos
Aminoacil-tRNA Sintetases , Mycobacterium , Aminoacil-tRNA Sintetases/genética , Animais , Antibacterianos , Elementos de DNA Transponíveis , Humanos , Mycobacterium/genética , Nucleotídeos , Filogenia , RNA de Transferência/genética , RNA não Traduzido/genética
8.
Photosynth Res ; 154(3): 303-328, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434418

RESUMO

Microalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO2) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp. through multiparametric photosynthetic evaluation. Detailed photobiological analysis of this strain has revealed a smaller functional antenna, faster relaxation kinetics of non-photochemical quenching, and a high photosynthetic rate with increasing light and temperatures. Furthermore, laboratory scale growth assessment demonstrated a broad range halotolerance of 10-70 parts per thousand (PPT) and high-temperature tolerance up to 45 °C. Such traits led to the translation of biomass productivity potential from the laboratory scale (0.2-3.0 L) to the outdoor 50,000 L raceway pond scale (500-m2) without any pond crashes. The current investigation revealed outdoor single-day peak areal biomass productivity of 43 g m-2 d-1 in summer with an annual (March 2019-February 2020) average productivity of 20 g m-2 d-1 in seawater. From a sustainability perspective, this is the first report of successful round-the-year (> 347 days) multi-season (summer, monsoon, and winter) outdoor cultivation of Nannochloris sp. in broad seawater salinity (1-57 PPT), wide temperature ranges (15-40 °C), and in fluctuating light conditions. Concurrently, outdoor cultivation of this strain demonstrated conducive fatty acid distribution, including increased unsaturated fatty acids in winter. This inherent characteristic might play a role in protecting photosynthesis machinery at low temperatures and in high light stress. Altogether, our marine Nannochloris sp. showed tremendous potential for commercial scale cultivation to produce biofuels, food ingredients, and a sustainable source for vegetarian protein.


Assuntos
Clorófitas , Microalgas , Biomassa , Lagoas , Microalgas/metabolismo , Biocombustíveis
9.
BMC Cancer ; 22(1): 1074, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258167

RESUMO

BACKGROUNDS: Microbiome dysbiosis is an important contributing factor in tumor development and thus may be a risk predictor for human malignancies. In the United States, women with Hispanic/Latina (HIS) and African American (AA) background have a higher incidence of cervical cancer and poorer outcomes than Caucasian American (CA) women. METHODS: Here, we assessed the distribution pattern of microbiota in cervical intraepithelial neoplasia (CIN) lesions obtained from HIS (n = 12), AA (n = 12), and CA (n = 12) women, who were screened for CC risk assessment. We employed a 16S rRNA gene sequencing approach adapted from the NIH-Human Microbiome Project to identify the microbial niche in all CIN lesions (n = 36). RESULTS: We detected an appreciably decreased abundance of beneficial Lactobacillus in the CIN lesions of the AA and HIS women compared to the CA women. Differential abundance of potentially pathogenic Prevotella, Delftia, Gardnerella, and Fastidiosipila was also evident among the various racial groups. An increased abundance of Micrococcus was also evident in AA and HIS women compared to the CA women. The detection level of Rhizobium was higher among the AA ad CA women compared to the HIS women. In addition to the top 10 microbes, a unique niche of 27 microbes was identified exclusively in women with a histopathological diagnosis of CIN. Among these microbes, a group of 8 microbiota; Rubellimicrobium, Podobacter, Brevibacterium, Paracoccus, Atopobium, Brevundimonous, Comamonous, and Novospingobium was detected only in the CIN lesions obtained from AA and CA women. CONCLUSIONS: Microbial dysbiosis in the cervical epithelium represented by an increased ratio of potentially pathogenic to beneficial microbes may be associated with increased CC risk disparities. Developing a race-specific reliable panel of microbial markers could be beneficial for CC risk assessment, disease prevention, and/or therapeutic guidance.


Assuntos
Microbiota , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomaviridae/genética , RNA Ribossômico 16S/genética , Infecções por Papillomavirus/complicações , Disbiose , Neoplasias do Colo do Útero/patologia , Microbiota/genética , Displasia do Colo do Útero/epidemiologia
10.
FASEB J ; 35(6): e21620, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34048084

RESUMO

Mitochondria are highly dynamic, maternally inherited cytoplasmic organelles, which fulfill cellular energy demand through the oxidative phosphorylation system. Besides, they play an active role in calcium and damage-associated molecular patterns signaling, amino acid, and lipid metabolism, and apoptosis. Thus, the maintenance of mitochondrial integrity and homeostasis is extremely critical, which is achieved through continual fusion and fission. Mitochondrial fusion allows the transfer of gene products between mitochondria for optimal functioning, especially under metabolic and environmental stress. On the other hand, fission is crucial for mitochondrial division and quality control. The imbalance between these two processes is associated with various ailments such as cancer, neurodegenerative and cardiovascular diseases. This review discusses the molecular mechanisms that control mitochondrial fusion and fission and how the disruption of mitochondrial dynamics manifests into various disease conditions.


Assuntos
Homeostase , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Animais , Humanos
11.
Crit Rev Food Sci Nutr ; 62(18): 4893-4907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33543636

RESUMO

Iron deficiency anemia (IDA) is probably the most ignored situation in the world of malnutrition-largely due to its slow progression. Multiple reasons can be attributed as the cause of IDA, which is not limited to any specific region or population; therefore, making it a matter of global concern. Despite the human body's ability to absorb and conserve iron stores, the gradual loss due to various physiological conditions leads to net deficiency of iron. Countless commercial iron supplements are available, but at given physiological conditions, almost all of these "Bio-not-available" iron forms quite often become ineffective. World Health Organization and other government bodies have jointly developed health advisories and tried to developed nutrition supplements several times in the last two decades. IDA, when combined with other disease conditions, becomes a life-threatening situation. At the same time, an overdose of iron could also be very harmful to the body. Therefore, it is important to deal with this situation with caution. This article covers iron metabolism, available options for iron supplementation, regulatory aspects and strategies to prevent IDA.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Desnutrição , Anemia Ferropriva/epidemiologia , Suplementos Nutricionais , Humanos , Ferro , Ferro da Dieta/uso terapêutico , Desnutrição/complicações , Desnutrição/prevenção & controle , Políticas
12.
Phytochem Anal ; 33(3): 365-372, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34747066

RESUMO

INTRODUCTION: Marine microalgae protein has better solubility and digestibility than other protein-based feeds. Apart from protein, high-value biomolecules have an immense potential to enhance the quality of feed, but knowledge about them is scarce. OBJECTIVE: Marine microalga Picochlorum sp. biomass molecular characterisation along with commonly used protein feed such as fishmeal and soymeal for potential feed ingredients. METHODOLOGY: Liquid chromatography coupled with mass spectrometry (LC-MS) was used for biomolecular characterisation. The correlation of biomolecules sets was evaluated using principal component analysis (PCA) and heatmap clustering. RESULTS: LC-MS identified 116 biomolecules cumulatively among microalga, fishmeal, and soymeal that includes fatty acids, acylglycerols, vitamins, sterols, pigments, nucleotides, unique amino acids, amines, sugars and miscellaneous. These 116 biomolecules were screened based on their functional importance as feed ingredients. Among the different sets of biomolecules, microalga contained a more diverse set of fatty acids, pigments, sterols, and vitamins than acylglycerols, unique amino acids, nucleotides, and sugars. Fishmeal contained a more diverse set of acylglycerols, unique amino acids, nucleotides, and amines, while soymeal contained the highest number of sugars and miscellaneous biomolecules. The PCA confirmed the significance level (P > 95%) and heatmap clustering showed the diversity and relatedness of biomolecules among the microalga, fishmeal, and soymeal. CONCLUSION: This study showed that the marine microalga Picochlorum sp. biomass has a rich source of biomolecules and could complement fishmeal or soymeal in feed and is also sustainable and economical as compared to fishmeal and soymeal.


Assuntos
Microalgas , Ração Animal/análise , Ácidos Graxos , Microalgas/metabolismo
13.
Virol J ; 18(1): 178, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461941

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive. OBJECTIVE: Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP). RESULTS: Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples. CONCLUSION: In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay.


Assuntos
Teste para COVID-19/métodos , COVID-19/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/diagnóstico , Humanos , Transcrição Reversa , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
14.
Arch Microbiol ; 203(4): 1439-1450, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392625

RESUMO

Chlamydomonas reinhardtii is one of the most characterized green algae. The open-pond cultivation can be challenging due to sensitivity of strain to fluctuating environmental conditions and unavailability of low-cost photoautotrophic media. In this study, the photoautotrophic growth of C. reinhardtii was evaluated in 1-m2 open ponds placed in greenhouse. Sodium bicarbonate (NaHCO3) was evaluated as an alternative buffering agent to tris. The effect of buffer and pH was tested. The growth was studied in the presence of various nitrogen [urea and ammonium bicarbonate (NH4HCO3)] sources. In the study, it was found that 125-ppm NaHCO3 as an optimum concentration. The buffering agent in the media was found to have major impact on growth. Without buffering agent, culture did not grow, and pH drop was observed. The sodium bicarbonate-buffered media reported to have the lowest bacterial contamination (18.3%), highest AFDW per OD (0.39 ± 0.027 g/L) and higher Fv/Fm (0.714 ± 0.016), whereas these values were found to be 62%, 0.19 ± 0.02 g/L and 0.537 ± 0.053 for tris-grown culture, respectively. The pH 7.0-7.5 was determined as an optimum, whereas pH 6.5-7.0 and 8.0-8.5 were found to affect the growth and induce palmelloidy. The OD and AFDW of culture grown in NH4HCO3 were found equivalent to a standard nitrogen source (NH4Cl), whereas culture shown poor growth in urea. Based on these data, NH4HCO3 media recipe and the optimized cultivation parameters were selected for photoautotrophic cultivation of Chlamydomonas in greenhouse open ponds.


Assuntos
Processos Autotróficos , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Processos Fototróficos , Lagoas/química , Chlamydomonas reinhardtii/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Bicarbonato de Sódio/análise
15.
Physiol Plant ; 173(1): 246-258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33583021

RESUMO

Heavy metal (HM) pollution is a serious agro-economic concern and algae can be used as one of the bioremediating agents as it can grow in different water bodies. In this study, the Scenedesmus acutus and Chlorella pyrenoidosa were exposed to various concentrations of Pb2+ for 96 h and a multidimensional toxicity assessment has been performed by pulse amplitude modulation technique and Fourier transform infrared spectroscopy (FTIR). High-angle annular dark-field scanning transmission electron microscopy coupled energy dispersive spectroscopy (HAADF-S/TEM-EDS) detected intracellular localization of Pb2+ , thus confirming algal bio-accumulation abilities. Sensitivity assay demonstrated that 500 and 400 ppm of Pb2+ as minimum inhibitory concentrations (MIC50) for S. acutus and C. pyrenoidosa, respectively, which inhibited growth (OD) by >50% in 96 h. During bioremoval studies, S. acutus and C. pyrenoidosa were found to remove ∼52 and ∼32% of total Pb2+ , respectively. The particulate analysis of Pb2+ by ICP-OES showed >99.5% biosorption capacity by both the species. The biomass characterization by FTIR showed the involvement of various cell wall functional groups such as hydroxyl, alkane, and C=C groups in the biosorption of Pb2+ by both the species. The noninvasive chlorophyll fluorescence techniques provide a quick insight on heavy metal stress and can be adapted as a rapid detection tool to study the Pb2+ stress. S. acutus strain showed higher tolerance and higher bioremoval capacity than C. pyrenoidosa. However, both the species can be exploited for biosorption of Pb2+ from aquatic streams as an alternative way for low cost Pb2+ recovery systems.


Assuntos
Chlorella , Metais Pesados , Microalgas , Scenedesmus , Água Doce
16.
Adv Exp Med Biol ; 1330: 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339027

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy among women worldwide. In most cases, it is diagnosed late at an advanced stage and does not respond well to existing therapies leading to its poor prognosis. In addition, other factors including epidemiological, complex histological diversity, multiple molecular alterations, and overlapping signaling pathways are also important contributors to poor disease outcome. Efforts have continued to develop a deeper understanding of the molecular pathogenesis and altered signaling nodes that provide hope for better clinical management through the development of novel approaches for early diagnosis, disease subtyping, prognosis, and therapy. In this chapter, we provide a detailed overview of OC and its histological subtypes and discuss prevalent molecular aberrations and active signaling pathways that drive OC progression. We also summarize various diagnostic and prognostic markers and therapeutic approaches currently being employed and discuss emerging findings that hold the potential to change the future course of OC management.


Assuntos
Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Humanos , Metástase Linfática , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Transdução de Sinais
17.
J Environ Manage ; 291: 112697, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934021

RESUMO

With increasing demand for resources to achieve global food-water-energy nexus and rapid decline in land-based sources, oceans represent both solution and boost to sustainable environment and economy. In addition to fundamental part of earth's ecosystem for uncatalogued diversity of life, oceans are undervalued economy powerhouse with gross marine product value. With sustainable management of existing assets including shipping, transportation, manufacturing, fisheries, tourism and exploration of new business like marine biotechnology and renewable energy, the ocean or blue economy has potential to fulfill sustainable development goals (SDG). In spite of recognition of blue economy as a new economic frontier, investments by existing industries and emergence of new ones are limited and less known, hence require more in depth attention and scientific understanding. In the present study, authors present a systematic comparative assessment of blue economy sectors with distinct challenges and strategies to be further explored and implemented for industrial deployment. The conceptualization of integrated routes of bio(economy) by the current study can act as gateway for key stakeholders, i.e. governance, bluepreneurs (scientists and industries) to prioritize technologies for sustainable applications of marine resources.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Oceanos e Mares , Poder Psicológico
18.
World J Microbiol Biotechnol ; 37(11): 182, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580746

RESUMO

Microalgae offer a promising source of biofuel and a wide array of high-value biomolecules. Large-scale cultivation of microalgae at low density poses a significant challenge in terms of water management. High-density microalgae cultivation, however, can be challenging due to biochemical changes associated with growth dynamics. Therefore, there is a need for a biomarker that can predict the optimum density for high biomass cultivation. A locally isolated microalga Cyanobacterium aponinum CCC734 was grown with optimized nitrogen and phosphorus in the ratio of 12:1 for sustained high biomass productivity. To understand density-associated bottlenecks secretome dynamics were monitored at biomass densities from 0.6 ± 0.1 to 7 ± 0.1 g/L (2 to 22 OD) in batch mode. Liquid chromatography coupled with mass spectrometry identified 880 exometabolites in the supernatant of C. aponinum CCC734. The PCA analysis showed similarity between exometabolite profiles at low (4 and 8 OD) and mid (12 and 16 OD), whereas distinctly separate at high biomass concentrations (20 and 22 OD). Ten exometabolites were selected based on their role in influencing growth and are specifically present at low, mid, and high biomass concentrations. Taking cues from secretome dynamics, 5.0 ± 0.5 g/L biomass concentration (16 OD) was optimal for C. aponinum CCC734 cultivation. Further validation was performed with a semi-turbidostat mode of cultivation for 29 days with a volumetric productivity of 1.0 ± 0.2 g/L/day. The secretomes-based footprinting tool is the first comprehensive growth study of exometabolite at the molecular level at variable biomass densities. This tool may be utilized in analyzing and directing microalgal cultivation strategies and reduction in overall operating costs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Secretoma/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Microalgas/citologia , Nitrogênio , Fósforo , Água
19.
Mol Biol Rep ; 47(11): 8747-8755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33074412

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) - Cas associated protein 9 (Cas9) system is very precise, efficient and relatively simple in creating genetic modifications at a predetermined locus in the genome. Genome editing with Cas9 ribonucleoproteins (RNPs) has reduced cytotoxic effects, off-target cleavage and increased on-target activity and the editing efficiencies. The unicellular alga Chlamydomonas reinhardtii is an emerging model for studying the production of high-value products for industrial applications. Development of C. reinhardtii as an industrial biotechnology host can be achieved more efficiently through genetic modifications using genome editing tools. We made an attempt to target MAA7 gene that encodes the tryptophan synthase ß-Subunit using CRISPR-Cas9 RNPs to demonstrate knock-out and knock-in through homology-dependent repair template at the target site. In this study, we have demonstrated targeted gene knock-out in C. reinhardtii using programmed RNPs. Targeted editing of MAA7 gene was confirmed by sequencing the clones that were resistant to 5-Fluoroindole (5-FI). Non-homologous end joining (NHEJ) repair mechanism led to insertion, deletion, and/or base substitution in the Cas9 cleavage vicinity, encoding non-functional MAA7 protein product (knock-out), conferring resistance to 5-FI. Here, we report an efficient protocol for developing knock-out mutants in Chlamydomonas using CRISPR-Cas9 RNPs. The high potential efficiency of editing may also eliminate the need to select mutants by phenotype. These research findings would be more likely applied to other green algae for developing green cell factories to produce high-value molecules.


Assuntos
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Edição de Genes/métodos , Triptofano Sintase/genética , Biotecnologia , Técnicas de Inativação de Genes
20.
Genomics ; 111(3): 465-472, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518464

RESUMO

A filamentous cyanobacteria, Geitlerinema sp. FC II, was isolated from marine algae culture pond at Reliance Industries Limited (RIL), India. The 6.7 Mb draft genome of FC II encodes for 6697 protein coding genes. Analysis of the whole genome sequence revealed presence of nif gene cluster, supporting its capability to fix atmospheric nitrogen. FC II genome contains two variants of sulfide:quinone oxidoreductases (SQR), which is a crucial elector donor in cyanobacterial metabolic processes. FC II is characterized by the presence of multiple CRISPR- Cas (Clustered Regularly Interspaced Short Palindrome Repeats - CRISPR associated proteins) clusters, multiple variants of genes encoding photosystem reaction centres, biosynthetic gene clusters of alkane, polyketides and non-ribosomal peptides. Presence of these pathways will help FC II in gaining an ecological advantage over other strains for biomass production in large scale cultivation system. Hence, FC II may be used for production of biofuel and other industrially important metabolites.


Assuntos
Cianobactérias/genética , Genoma Bacteriano , Família Multigênica , Nitrogênio/metabolismo , Sequenciamento Completo do Genoma , Biocombustíveis , Cianobactérias/metabolismo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA