Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202314856, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305510

RESUMO

Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. 207 Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic 207 Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation 207 Pb NMR and relativistic DFT calculations to distinguish the [PbX6 ] configurations in mixed iodide-bromide 3D FAPb(Br1-x Ix )3 perovskites and 2D BA2 Pb(Br1-x Ix )4 perovskites based on formamidinium (FA+ ) and butylammonium (BA+ ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.

2.
ACS Mater Lett ; 6(1): 267-274, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178980

RESUMO

Crystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted. The underlying reasons for such a peculiar phase distribution are unclear. While crystallization of regular-graded quasi-2D perovskites has been described as starting with 3D phases from the liquid-air interface, the film formation of reverse-graded films has not been investigated yet. Here, we examine the impact of the alkyl chain length on the formation of regular- and reverse-graded perovskites using n-alkylammonium ions. We find that long alkyl chains reverse the phase distribution gradient. By combining photoluminescence spectroscopy with in situ optical absorption measurements, we demonstrate that crystallization starts at the liquid-N2 interface, though as 3D phases for short-chain n-alkylammonium ions and as quasi-2D phases for long chains. We link this behavior to enhanced van der Waals interactions between long-chain n-alkylammonium ions in polar solvents and their tendency to accumulate at the liquid-N2 interface, creating a concentration gradient along the film thickness.

3.
Nat Commun ; 15(1): 1276, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341428

RESUMO

The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. When estimated using sensitive photocurrent measurements that cover the above- and sub-bandgap regions, the radiative open-circuit voltage is often unphysically low. Here we report sensitive photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap mixed-halide lead perovskite solar cells. The radiative ideality factor associated with the optical transitions increases from 1, above and near the bandgap edge, to ~2 at mid-bandgap. Such photon energy-dependent ideality factor corresponds to a many-diode model. The radiative open-circuit voltage limit derived from this many-diode model enables differentiating between radiative and non-radiative voltage losses. The latter are deconvoluted into contributions from the bulk and interfaces via determining the quasi-Fermi level splitting. The experiments show that while sub-bandgap defects do not contribute to radiative voltage loss, they do affect non-radiative voltage losses.

4.
Adv Mater ; : e2404795, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984503

RESUMO

Solution-processed Ruddlesden-Popper (RP) interlayers in lead halide perovskite solar cells (PSCs) present processing challenges due to fast film formation and uncontrolled growth of phases and layer thickness at interfaces. In this work, an alternative, solvent-free, thermal co-evaporation process is developed to deposit RP interlayers. The method provides precise control on interlayer thickness and enables understanding its role on charge-carrier extraction. Studying RP film growth reveals the development of heterointerfaces when deposited on three-dimensional (3D) perovskite layers. This allows a large thickness window with an optimum between 20 nm and 40 nm to improve the optoelectronic properties of the underlying 3D perovskite. Solar cells using evaporated interlayers achieve power conversion efficiency of 21.6%, compared to 19.6% for untreated devices, driven by improvements in the open-circuit voltage and fill factor. This work sheds light on the importance of phase and thickness control of passivation layers, which ultimately determine the solar cell performance in state-of-the-art PSCs.

5.
Adv Mater ; 36(1): e2305567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37722700

RESUMO

Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I2 , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I2 can react with bromide (Br- ) in the perovskite to form a trihalide ion I2 Br- (Iδ- -Iδ+ -Brδ- ), whose negatively charged iodide (Iδ- ) can further exchange with another lattice Br- to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I2 production and the Br- binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices.

6.
ACS Energy Lett ; 8(4): 1662-1670, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090170

RESUMO

Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA2MA n-1Pb n (Br x I1-x )3n+1, with PEA+: phenethylammonium and MA+: methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites (n = 1), it is not suppressed in quasi-2D phases (n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.

7.
ACS Appl Energy Mater ; 6(10): 5217-5229, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234970

RESUMO

Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light management techniques assisted by optical simulation. We first engineered (i)a-Si:H passivating layers for (100)-oriented flat c-Si surfaces and combined them with various (n)a-Si:H, (n)nc-Si:H, and (n)nc-SiOx:H interfacial layers for SHJ bottom-cells. In a symmetrical configuration, a long minority carrier lifetime of 16.9 ms was achieved when combining (i)a-Si:H bilayers with (n)nc-Si:H (extracted at the minority carrier density of 1015 cm-3). The perovskite sub-cell uses a photostable mixed-halide composition and surface passivation strategies to minimize energetic losses at charge-transport interfaces. This allows tandem efficiencies above 23% (a maximum of 24.6%) to be achieved using all three types of (n)-layers. Observations from experimentally prepared devices and optical simulations indicate that both (n)nc-SiOx:H and (n)nc-Si:H are promising for use in high-efficiency tandem solar cells. This is possible due to minimized reflection at the interfaces between the perovskite and SHJ sub-cells by optimized interference effects, demonstrating the applicability of such light management techniques to various tandem structures.

8.
Nat Commun ; 13(1): 349, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039493

RESUMO

Defects in perovskite solar cells are known to affect the performance, but their precise nature, location, and role remain to be firmly established. Here, we present highly sensitive measurements of the sub-bandgap photocurrent to investigate defect states in perovskite solar cells. At least two defect states can be identified in p-i-n perovskite solar cells that employ a polytriarylamine hole transport layer and a fullerene electron transport layer. By comparing devices with opaque and semi-transparent back contacts, we demonstrate the large effect of optical interference on the magnitude and peak position in the sub-bandgap external quantum efficiency (EQE) in perovskite solar cells. Optical simulations reveal that defects localized near the interfaces are responsible for the measured photocurrents. Using optical spacers of different lengths and a mirror on top of a semi-transparent device, allows for the precise manipulation of the optical interference. By comparing experimental and simulated EQE spectra, we show that sub-bandgap defects in p-i-n devices are located near the perovskite-fullerene interface.

9.
Adv Mater ; 34(11): e2110053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34965005

RESUMO

Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem. Here, an integrated all-perovskite tandem solar cell is presented that uses surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene interfaces, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells. Collectively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.

10.
ACS Appl Mater Interfaces ; 14(14): 16497-16504, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352932

RESUMO

Interface layers used for electron transport (ETL) and hole transport (HTL) often significantly enhance the performance of organic solar cells (OSCs). Surprisingly, interface engineering for hole extraction has received little attention thus far. By finetuning the chemical structure of carbazole-based self-assembled monolayers with phosphonic acid anchoring groups, varying the length of the alkane linker (2PACz, 3PACz, and 4PACz), these HTLs were found to perform favorably in OSCs. Compared to archetypal PEDOT:PSS, the PACz monolayers exhibit higher optical transmittance and lower resistance and deliver a higher short-circuit current density and fill factor. Power conversion efficiencies of 17.4% have been obtained with PM6:BTP-eC9 as the active layer, which was distinctively higher than the 16.2% obtained with PEDOT:PSS. Of the three PACz derivatives, the new 3PACz consistently outperforms the other two monolayer HTLs in OSCs with different state-of-the-art nonfullerene acceptors. Considering its facile synthesis, convenient processing, and improved performance, we consider that 3PACz is a promising interface layer for widespread use in OSCs.

11.
ACS Appl Mater Interfaces ; 14(1): 2166-2176, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936322

RESUMO

Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells (PSCs) have been achieved with the application of self-assembled monolayers (SAMs), serving as stand-alone hole transport layers in the p-i-n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium-tin oxide (ITO), are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non-covered areas can result in shunting or low open-circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma-assisted atomic layer deposition (ALD) with Ni(MeCp)2 as the precursor and O2 plasma as the co-reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open-circuit voltage of NiO + MeO-2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20% efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy (TEM), elemental composition quantification by Rutherford backscattering spectrometry (RBS), and conductive atomic force microscopy (c-AFM) mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite PV.

12.
ACS Appl Energy Mater ; 4(7): 6650-6658, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34337343

RESUMO

Light-induced halide segregation hampers obtaining stable wide-band-gap solar cells based on mixed iodide-bromide perovskites. So far, the effect of prolonged illumination on the performance of mixed-halide perovskite solar cells has not been studied in detail. It is often assumed that halide segregation leads to a loss of open-circuit voltage. By simultaneously recording changes in photoluminescence and solar cell performance under prolonged illumination, we demonstrate that cells instead deteriorate by a loss of short-circuit current density and that the open-circuit voltage is less affected. The concurrent red shift, increased lifetime, and higher quantum yield of photoluminescence point to the formation of relatively emissive iodide-rich domains under illumination. Kinetic Monte Carlo simulations provide an atomistic insight into their formation via exchange of bromide and iodide, mediated by halide vacancies. Localization of photogenerated charge carriers in low-energy iodide-rich domains and subsequent recombination cause reduced photocurrent and red-shifted photoluminescence. The loss in photovoltaic performance is diminished by partially replacing organic cations by cesium ions. Ultrasensitive photocurrent spectroscopy shows that cesium ions result in a lower density of sub-band-gap defects and suppress defect growth under illumination. These defects are expected to play a role in the development and recovery of light-induced compositional changes.

13.
Nat Commun ; 11(1): 5254, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067448

RESUMO

Perovskite semiconductors hold a unique promise in developing multijunction solar cells with high-efficiency and low-cost. Besides design constraints to reduce optical and electrical losses, integrating several very different perovskite absorber layers in a multijunction cell imposes a great processing challenge. Here, we report a versatile two-step solution process for high-quality 1.73 eV wide-, 1.57 eV mid-, and 1.23 eV narrow-bandgap perovskite films. Based on the development of robust and low-resistivity interconnecting layers, we achieve power conversion efficiencies of above 19% for monolithic all-perovskite tandem solar cells with limited loss of potential energy and fill factor. In a combination of 1.73 eV, 1.57 eV, and 1.23 eV perovskite sub-cells, we further demonstrate a power conversion efficiency of 16.8% for monolithic all-perovskite triple-junction solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA