Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Am J Pathol ; 191(2): 274-282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a wide range of disease severity, ranging from asymptomatic infection to a life-threating illness, particularly in the elderly population and individuals with comorbid conditions. Among individuals with serious coronavirus 2019 (COVID-19) disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19-induced ARDS and evaluate therapeutic strategies. We report two cases of ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that had pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic, and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. Notable increases in circulating cytokines were observed in three of four infected, aged AGMs but not in infected RMs. All the AGMs had increased levels of plasma IL-6 compared with baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2. Together, our results indicate that both RMs and AGMs are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations, including ARDS.


Assuntos
COVID-19/etiologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Envelhecimento , Animais , Chlorocebus aethiops/virologia , Infecções por Coronavirus/tratamento farmacológico , Citocinas/metabolismo , Humanos , Pulmão/patologia , Macaca mulatta/virologia , Carga Viral/métodos
2.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991819

RESUMO

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Assuntos
Células Epiteliais Alveolares/imunologia , COVID-19/imunologia , Expressão Gênica , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transdução Genética
3.
J Cell Physiol ; 232(3): 517-525, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27249540

RESUMO

Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPß, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/metabolismo , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Sítios de Ligação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Deleção de Sequência , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição RelA/metabolismo , Células U937 , Replicação Viral/efeitos dos fármacos , Proteínas de Ligação a Hormônio da Tireoide
4.
Am J Pathol ; 186(5): 1361-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26952642

RESUMO

Atherosclerosis regression is an important clinical goal, and treatments that can reverse atherosclerotic plaque formation are actively being sought. Our aim was to determine whether administration of exogenous IL-19, a Th2 cytokine, could attenuate progression of preformed atherosclerotic plaque and to identify molecular mechanisms. LDLR(-/-) mice were fed a Western diet for 12 weeks, then administered rIL-19 or phosphate-buffered saline concomitant with Western diet for an additional 8 weeks. Analysis of atherosclerosis burden showed that IL-19-treated mice were similar to baseline, in contrast to control mice which showed a 54% increase in plaque, suggesting that IL-19 halted the progression of atherosclerosis. Plaque characterization showed that IL-19-treated mice had key features of atherosclerosis regression, including a reduction in macrophage content and an enrichment in markers of M2 macrophages. Mechanistic studies revealed that IL-19 promotes the activation of key pathways leading to M2 macrophage polarization, including STAT3, STAT6, Kruppel-like factor 4, and peroxisome proliferator-activated receptor γ, and can reduce cytokine-induced inflammation in vivo. We identified a novel role for IL-19 in regulating macrophage lipid metabolism through peroxisome proliferator-activated receptor γ-dependent regulation of scavenger receptor-mediated cholesterol uptake and ABCA1-mediated cholesterol efflux. These data show that IL-19 can halt progression of preformed atherosclerotic plaques by regulating both macrophage inflammation and cholesterol homeostasis and implicate IL-19 as a link between inflammation and macrophage cholesterol metabolism.


Assuntos
Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Interleucina-10/farmacologia , Macrófagos/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Biomarcadores/metabolismo , Dieta Ocidental , Progressão da Doença , Feminino , Inflamação , Interleucinas , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Knockout , PPAR gama/metabolismo , Fatores de Transcrição STAT/metabolismo , Transfecção
5.
J Cell Physiol ; 231(7): 1542-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26553431

RESUMO

Recently, multiple µ-opioid receptor (MOR) isoforms have been identified that originate from a single gene, OPRM1; however, both their regulation and their functional significance are poorly characterized. The objectives of this study were to decipher, first, the regulation of alternatively spliced µ-opioid receptor isoforms and the spliceosome components that determine splicing specificity and, second, the signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Our studies demonstrated that the expression of a particular splice variant, MOR-1X, was up-regulated by morphine, and this coincided with an increase in the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 revealed that the unique distal portion of the C-terminal domain contains additional phosphorylation sites, whereas functional comparison found distinct signaling differences, particularly in the ERK and p90 RSK pathways. Additionally, MOR-1X expression significantly reduced Bax expression and mitochondrial dehydrogenase activity, suggesting a unique functional consequence for MOR-1X specific signaling. Collectively, these findings suggest that alternative splicing of the MOR is altered by exogenous opioids, such as morphine, and that individual isoforms, such as MOR-1X, mediate unique signal transduction with distinct functional consequence. Furthermore, we have identified for the first time a potential mechanism that involves the essential splicing factor ASF/SF2 through which morphine regulates splicing specificity of the MOR encoding gene, OPRM1.


Assuntos
Receptores Opioides mu/genética , Fatores de Processamento de Serina-Arginina/genética , Transcrição Gênica , Processamento Alternativo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Morfina/administração & dosagem , Isoformas de Proteínas/genética , Receptores Opioides mu/biossíntese , Transdução de Sinais/efeitos dos fármacos
6.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948748

RESUMO

HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis. Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for biomarkers of intestinal epithelial barrier disruption (IEBD), inflammasome activation (IL-1ß and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). Higher plasma levels of IL-1ß and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP), during the chronic phase of treated SIV infection. Further, significant correlations of plasma IFABP levels with IL-1ß and IL-18 were observed between 10-12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV+ART phase along with a trend of increase in frequencies of activated CD14 + CD16 + intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1ß following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could accelerate CVD pathogenesis. Further research is needed to understand mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated CVD and metabolic complications, enabling targeted interventions in people with HIV.

7.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693534

RESUMO

Adverse neurological and psychiatric outcomes, collectively termed the post-acute sequelae of SARS-CoV-2 infection (PASC), persist in adults clinically recovered from COVID-19. Effective therapeutic interventions are fundamental to reducing the burden of PASC, necessitating an investigation of the pathophysiology underlying the debilitating neurological symptoms associated with the condition. Herein, eight non-human primates (Wild-Caught African Green Monkeys, n =4; Indian Rhesus Macaques, n =4) were inoculated with the SARS-CoV-2 isolate USA-WA1/2020 by either small particle aerosol or via multiple routes. At necropsy, tissue from the olfactory epithelium and pyriform cortex/amygdala of SARS-CoV-2 infected non-human primates were collected for ribonucleic acid in situ hybridization (i.e., RNAscope). First, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) mRNA are downregulated in the pyriform cortex/amygdala of non-human primates clinically recovered from SARS-CoV-2 inoculation relative to wildtype controls. Second, abundant SARS-CoV-2 mRNA was detected in clinically recovered non-human primates; mRNA which is predominantly harbored in pericytes. Collectively, examination of post-mortem pyriform cortex/amygdala brain tissue of non-human primates clinically recovered from SARS-CoV-2 infection revealed two early pathophysiological mechanisms potentially underlying PASC. Indeed, therapeutic interventions targeting the downregulation of ACE2, decreased expression of TMPRSS2, and/or persistent infection of pericytes in the central nervous system may effectively mitigate the debilitating symptoms of PASC.

8.
Nat Commun ; 14(1): 4414, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479685

RESUMO

Elevation in soluble urokinase receptor (suPAR) and proteinuria are common signs in patients with moderate to severe coronavirus disease 2019 (COVID-19). Here we characterize a new type of proteinuria originating as part of a viral response. Inoculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes increased suPAR levels and glomerulopathy in African green monkeys. Using an engineered mouse model with high suPAR expression, inhaled variants of SARS-CoV-2 spike S1 protein elicite proteinuria that could be blocked by either suPAR antibody or SARS-CoV-2 vaccination. In a cohort of 1991 COVID-19 patients, suPAR levels exhibit a stepwise association with proteinuria in non-Omicron, but not in Omicron infections, supporting our findings of biophysical and functional differences between variants of SARS-CoV-2 spike S1 protein and their binding to podocyte integrins. These insights are not limited to SARS-CoV-2 and define viral response proteinuria (VRP) as an innate immune mechanism and co-activation of podocyte integrins.


Assuntos
COVID-19 , Podócitos , Animais , Camundongos , Chlorocebus aethiops , Humanos , Vacinas contra COVID-19 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , SARS-CoV-2 , Integrinas , Proteinúria
9.
J Cell Physiol ; 227(7): 2832-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22034138

RESUMO

The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the µ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1 , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Animais , Epigenômica/métodos , Humanos
10.
Front Cell Dev Biol ; 10: 849298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465335

RESUMO

Recent studies on the epitranscriptomic code of SARS-CoV-2 infection have discovered various RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and 2'-O-methylation (Nm). The effects of RNA methylation on SARS-CoV-2 replication and the enzymes involved in this mechanism are emerging. In this review, we summarize the advances in this emerging field and discuss the role of various players such as readers, writers, and erasers in m6A RNA methylation, the role of pseudouridine synthase one and seven in epitranscriptomic modification Ψ, an isomer of uridine, and role of nsp16/nsp10 heterodimer in 2'-O-methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We also discuss RNA expression levels of various enzymes involved in RNA modifications in blood cells of SARS-CoV-2 infected individuals and their impact on host mRNA modification. In conclusion, these observations will facilitate the development of novel strategies and therapeutics for targeting RNA modification of SARS-CoV-2 RNA to control SARS-CoV-2 infection.

11.
J Cell Biochem ; 112(4): 1168-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21308746

RESUMO

Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1ß is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1ß in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-ß isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1ß, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1ß also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-ß-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-ß, LAP(T235A) showed reduction in IL-1ß-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1ß and C/EBP-ß-mediated C3 gene expression in astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Complemento C3/metabolismo , Interleucina-1beta/farmacologia , MAP Quinase Quinase 6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Complemento C3/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Luciferases/genética , Luciferases/metabolismo , MAP Quinase Quinase 6/genética , Mutação , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Methods Mol Biol ; 2311: 39-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033076

RESUMO

This chapter describes the culture and propagation of murine embryonic stem cells, F9 and P19, and strategies for differentiation of these stem cells into neurons. Additional techniques are described for obtaining enriched populations of mature neurons from P19 cells and differentiation of F9 cells into serotonergic or catecholaminergic neurons. The protocols described herein can be used for dissection of the pathways such as gliogenesis and neurogenesis that are involved in differentiation of pluripotent stem cells such as F9 and P19 into glial cells or terminally differentiated neurons.


Assuntos
Células-Tronco Embrionárias Murinas/patologia , Células-Tronco Neurais/patologia , Neurogênese , Neurônios/patologia , Teratocarcinoma/patologia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Teratocarcinoma/metabolismo , Tretinoína/farmacologia
13.
Front Cardiovasc Med ; 8: 634774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898535

RESUMO

Antiretroviral therapy (ART) has significantly reduced the rate of mortality in HIV infected population, but people living with HIV (PLWH) show higher rates of cardiovascular disease (CVD). However, the effect of antiretroviral (ARV) drug treatment on cardiac cells is not clear. In this study, we explored the effect of ARV drugs in cardiomyocyte epigenetic remodeling. Primary cardiomyocytes were treated with a combination of four ARV drugs (ritonavir, abacavir, atazanavir, and lamivudine), and epigenetic changes were examined. Our data suggest that ARV drugs treatment significantly reduces acetylation at H3K9 and H3K27 and promotes methylation at H3K9 and H3K27, which are histone marks for gene expression activation and gene repression, respectively. Besides, ARV drugs treatment causes pathological changes in the cell through increased production of reactive oxygen species (ROS) and cellular hypertrophy. Further, the expression of chromatin remodeling enzymes was monitored in cardiomyocytes treated with ARV drugs using PCR array. The PCR array data indicated that the expression of epigenetic enzymes was differentially regulated in the ARV drugs treated cardiomyocytes. Consistent with the PCR array result, SIRT1, SUV39H1, and EZH2 protein expression was significantly upregulated in ARV drugs treated cardiomyocytes. Furthermore, gene expression analysis of the heart tissue from HIV+ patients showed that the expression of SIRT1, SUV39H1, and EZH2 was up-regulated in patients with a history of ART. Additionally, we found that expression of SIRT1 can protect cardiomyocytes in presence of ARV drugs through reduction of cellular ROS and cellular hypertrophy. Our results reveal that ARV drugs modulate the epigenetic histone markers involved in gene expression, and play a critical role in histone deacetylation at H3K9 and H3K27 during cellular stress. This study may lead to development of novel therapeutic strategies for the treatment of CVD in PLWH.

14.
Virology ; 540: 104-118, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765920

RESUMO

JC virus (JCV) Agnoprotein (Agno) plays critical roles in successful completion of the viral replication cycle. Understanding its regulatory roles requires a complete map of JCV-host protein interactions. Here, we report the first Agno interactome with host cellular targets utilizing "Two-Strep-Tag" affinity purification system coupled with mass spectroscopy (AP/MS). Proteomics data revealed that Agno primarily targets 501 cellular proteins, most of which contain "coiled-coil" motifs. Agno-host interactions occur in several cellular networks including those involved in protein synthesis and degradation; and cellular transport; and in organelles, including mitochondria, nucleus and ER-Golgi network. Among the Agno interactions, Rab11B, Importin and Crm-1 were first validated biochemically and further characterization was done for Crm-1, using a HIV-1 Rev-M10-like Agno mutant (L33D + E34L), revealing the critical roles of L33 and E34 residues in Crm-1 interaction. This comprehensive proteomics data provides new foundations to unravel the critical regulatory roles of Agno during the JCV life cycle.


Assuntos
Interações Hospedeiro-Patógeno , Vírus JC/metabolismo , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteoma , Proteômica/métodos , Proteínas Recombinantes , Relação Estrutura-Atividade , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/isolamento & purificação , Replicação Viral
15.
Theranostics ; 10(16): 7448-7464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642005

RESUMO

The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptores Virais/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/química , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Modelos Animais de Doenças , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Camundongos , Modelos Biológicos , Pandemias , Pneumonia Viral/terapia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Nanomedicina Teranóstica , Vacinas Virais/isolamento & purificação , Internalização do Vírus
16.
Nat Commun ; 11(1): 2280, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385245

RESUMO

Renal macrophages (RMs) participate in tissue homeostasis, inflammation and repair. RMs consist of embryo-derived (EMRMs) and bone marrow-derived RMs (BMRMs), but the fate, dynamics, replenishment, functions and metabolic states of these two RM populations remain unclear. Here we investigate and characterize RMs at different ages by conditionally labeling and ablating RMs populations in several transgenic lines. We find that RMs expand and mature in parallel with renal growth after birth, and are mainly derived from fetal liver monocytes before birth, but self-maintain through adulthood with contribution from peripheral monocytes. Moreover, after the RMs niche is emptied, peripheral monocytes rapidly differentiate into BMRMs, with the CX3CR1/CX3CL1 signaling axis being essential for the maintenance and regeneration of both EMRMs and BMRMs. Lastly, we show that EMRMs have a higher capacity for scavenging immune complex, and are more sensitive to immune challenge than BMRMs, with this difference associated with their distinct glycolytic capacities.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula , Rim/embriologia , Macrófagos/citologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/sangue , Quimiocina CX3CL1/metabolismo , Feminino , Feto/citologia , Fígado/embriologia , Masculino , Camundongos , Monócitos/citologia
17.
Front Pharmacol ; 10: 1510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920679

RESUMO

Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.

19.
Cell Death Dis ; 9(4): 415, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549313

RESUMO

Calcium (Ca2+) dynamics and oxidative signaling control mitochondrial bioenergetics in the central nervous system, where astrocytes are a major energy source for neurons. Cocaine use exacerbates HIV-associated neurocognitive disorders, but little is known about disruptions in astrocyte metabolism in this context. Our data show that the HIV protein Tat and cocaine induce a metabolic switch from glucose to fatty acid oxidation in astrocytes, thereby limiting lactate transport to neurons. Mechanistic analyses revealed increased Mitochondrial Ca2+ Uniporter (MCU)-mediated Ca2+ uptake in astrocytes exposed to Tat and cocaine due to oxidation of MCU. Since our data suggest that mitochondrial oxidation is dependent in part on MCU-mediated Ca2+ uptake, we targeted MCU to restore glycolysis in astrocytes to normalize extracellular lactate levels. Knocking down MCU in astrocytes prior to Tat and cocaine exposure prevented metabolic switching and protected neurons. These findings identify a novel molecular mechanism underlying neuropathogenesis in HIV and cocaine use.


Assuntos
Cocaína/toxicidade , HIV-1/metabolismo , Neurônios/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Astrócitos/citologia , Astrócitos/metabolismo , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células Cultivadas , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
20.
Sci Rep ; 8(1): 16300, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390000

RESUMO

HIV-1 Tat protein is released from HIV-1-infected cells and can enter non-permissive cells including neurons. Tat disrupts neuronal homeostasis and may contribute to the neuropathogenesis in people living with HIV (PLWH). The use of cocaine by PLWH exacerbates neuronal dysfunction. Here, we examined the mechanisms by which Tat and cocaine facilitate alterations in neuronal homeostatic processes. Bioinformatic interrogation of the results from RNA deep sequencing of rat hippocampal neurons exposed to Tat alone indicated the dysregulation of several genes involved in lipid and cholesterol metabolism. Following exposure to Tat and cocaine, the activation of cholesterol biosynthesis genes led to increased levels of free cholesterol and cholesteryl esters in rat neurons. Results from lipid metabolism arrays validated upregulation of several processes implicated in the biogenesis of ß-amyloid and Alzheimer's disease (AD), including sterol o-acyltransferase 1/acetyl-coenzyme A acyltransferase 1 (SOAT1/ACAT1), sortilin-related receptor L1 (SORL1) and low-density lipoprotein receptor-related protein 12 (LRP12). Further studies in Tat-treated primary neuronal cultures and brain tissues from HIV-1 transgenic mice as well as SIV-infected macaques confirmed elevated levels of SOAT1/ACAT 1 proteins. Our results offer novel insights into the molecular events involved in HIV and cocaine-mediated neuronal dysfunction that may also contribute to neuropathogenic events associated with the development of AD.


Assuntos
Complexo AIDS Demência/patologia , Colesterol/biossíntese , Transtornos Relacionados ao Uso de Cocaína/patologia , Cocaína/toxicidade , Neurônios/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Complexo AIDS Demência/virologia , Animais , Vias Biossintéticas/genética , Células Cultivadas , Colesterol/análise , Biologia Computacional , Modelos Animais de Doenças , Perfilação da Expressão Gênica , HIV-1/metabolismo , HIV-1/patogenicidade , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Macaca mulatta , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA