Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Hum Mutat ; 43(2): 143-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806794

RESUMO

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemia, is caused by disrupting variants in the PHEX gene, located on the X chromosome. XLH is inherited in an X-linked pattern with complete penetrance observed for both males and females. Patients experience lifelong symptoms resulting from chronic hypophosphatemia, including impaired bone mineralization, skeletal deformities, growth retardation, and diminished quality of life. This chronic condition requires life-long management with disease-specific therapies, which can improve patient outcomes especially when initiated early in life. To centralize and disseminate PHEX variant information, we have established a new PHEX gene locus-specific database, PHEX LSDB. As of April 30, 2021, 870 unique PHEX variants, compiled from an older database of PHEX variants, a comprehensive literature search, a sponsored genetic testing program, and XLH clinical trials, are represented in the PHEX LSDB. This resource is publicly available on an interactive, searchable website (https://www.rarediseasegenes.com/), which includes a table of variants and associated data, graphical/tabular outputs of genotype-phenotype analyses, and an online submission form for reporting new PHEX variants. The database will be updated regularly with new variants submitted on the website, identified in the published literature, or shared from genetic testing programs.


Assuntos
Bases de Dados Genéticas , Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Endopeptidase Neutra Reguladora de Fosfato PHEX , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Hipofosfatemia/genética , Masculino , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Qualidade de Vida
2.
BMC Genomics ; 22(1): 11, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407096

RESUMO

BACKGROUND: The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS: We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS: The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodes , Animais , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/veterinária , Genoma Bacteriano , Japão , Camundongos
3.
PLoS Pathog ; 13(8): e1006582, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28841717

RESUMO

For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.


Assuntos
Biofilmes , Macrófagos/imunologia , Miocardite/imunologia , Miocardite/microbiologia , Infecções Pneumocócicas/imunologia , Transcriptoma , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Infecções Pneumocócicas/genética , Análise de Componente Principal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Virulência/genética , Virulência/imunologia
4.
J Neurosci ; 37(14): 3956-3971, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28270575

RESUMO

Following spinal cord injury (SCI), astrocytes demonstrate long-lasting reactive changes, which are associated with the persistence of neuropathic pain and motor dysfunction. We previously demonstrated that upregulation of trkB.T1, a truncated isoform of the brain-derived neurotrophic factor receptor (BDNF), contributes to gliosis after SCI, but little is known about the effects of trkB.T1 on the function of astrocytes. As trkB.T1 is the sole isoform of trkB receptors expressed on astrocytes, we examined the function of trkB.T1-driven astrocytes in vitro and in vivo Immunohistochemistry showed that trkB.T1+ cells were significantly upregulated 7 d after injury, with sustained elevation in white matter through 8 weeks. The latter increase was predominantly found in astrocytes. TrkB.T1 was also highly expressed by neurons and microglia/macrophages at 7 d after injury and declined by 8 weeks. RNA sequencing of cultured astrocytes derived from trkB.T1+/+ (WT) and trkB.T1-/- (KO) mice revealed downregulation of migration and proliferation pathways in KO astrocytes. KO astrocytes also exhibited slower migration/proliferation in vitro in response to FBS or BDNF compared with WT astrocytes. Reduced proliferation of astrocytes was also confirmed after SCI in astrocyte-specific trkB.T1 KO mice; using mechanical allodynia and pain-related measurements on the CatWalk, these animals also showed reduced hyperpathic responses, along with improved motor coordination. Together, our data indicate that trkB.T1 in astrocytes contributes to neuropathic pain and neurological dysfunction following SCI, suggesting that trkB.T1 may provide a novel therapeutic target for SCI.SIGNIFICANCE STATEMENT Neuropathic pain after spinal cord injury (SCI) may in part be caused by upregulation of the brain-derived neurotrophic factor (BDNF) receptor trkB.T1, a truncated isoform of BDNF. TrkB.T1 is the only isoform of tropomyosin-related receptor kinase type B (trkB) receptors expressed on astrocytes. Here, we showed that trkB.T1 is significantly increased in the injured mouse spinal cord, where it is predominantly found in astrocytes. RNA sequencing of cultured astrocytes demonstrated downregulation of migration and proliferation pathways in trkB.T1 KO astrocytes. This was validated in vivo, where deletion of trkB.T1 in astrocytes reduced cell proliferation and migration. After SCI, astrocyte-specific trkB.T1 KO mice showed reduced hyperpathic responses and improved motor coordination. Therefore, the trkB.T1 receptor plays a significant pathophysiological role after SCI, and may provide a novel therapeutic target for SCI.


Assuntos
Astrócitos/metabolismo , Atividade Motora/fisiologia , Neuralgia/metabolismo , Receptor trkB/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/fisiopatologia , Isoformas de Proteínas/metabolismo , Receptor trkB/deficiência , Traumatismos da Medula Espinal/fisiopatologia
5.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109175

RESUMO

Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response-a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of ß-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased ß-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência/genética , Arginina/genética , Proteínas de Bactérias/genética , Comunicação Celular/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Aptidão Genética/genética , Proteínas Hemolisinas/genética , Humanos , Hidrolases/genética , Óperon/genética , Perforina/genética , Streptococcus agalactiae/genética , Transcriptoma/genética
6.
Infect Immun ; 84(10): 2922-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481242

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ß-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metabolismo dos Carboidratos/fisiologia , Carboidratos/farmacologia , Galactose/farmacocinética , Neuraminidase/fisiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Análise de Variância , Animais , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Galactose/metabolismo , Galactose/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico/metabolismo , Líquido da Lavagem Nasal/química , Septo Nasal/metabolismo , Septo Nasal/microbiologia , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Neuraminidase/metabolismo , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , beta-Galactosidase/deficiência , beta-Galactosidase/metabolismo
7.
Antimicrob Agents Chemother ; 60(10): 5933-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458211

RESUMO

Despite the increasing prevalence of the nosocomial pathogen Acinetobacter baumannii, little is known about which genomic components contribute to clinical presentation of this important pathogen. Most whole-genome comparisons of A. baumannii have focused on specific genomic regions associated with phenotypes in a limited number of genomes. In this work, we describe the results of a whole-genome comparative analysis of 254 surveillance isolates of Acinetobacter species, 203 of which were A. baumannii, isolated from perianal swabs and sputum samples collected as part of an infection control active surveillance program at the University of Maryland Medical Center. The collection of surveillance isolates includes both carbapenem-susceptible and -resistant isolates. Based on the whole-genome phylogeny, the A. baumannii isolates collected belong to two major phylogenomic lineages. Results from multilocus sequence typing indicated that one of the major phylogenetic groups of A. baumannii was comprised solely of strains from the international clonal lineage 2. The genomic content of the A. baumannii isolates was examined using large-scale BLAST score ratio analysis to identify genes that are associated with carbapenem-susceptible and -resistant isolates, as well as genes potentially associated with the source of isolation. This analysis revealed a number of genes that were exclusive or at greater frequency in each of these classifications. This study is the most comprehensive genomic comparison of Acinetobacter isolates from a surveillance study to date and provides important information that will contribute to our understanding of the success of A. baumannii as a human pathogen.


Assuntos
Acinetobacter baumannii/genética , Genômica/métodos , Centros Médicos Acadêmicos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana/genética , Variação Genética , Genoma Bacteriano , Humanos , Maryland , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética
8.
BMC Genomics ; 15: 738, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168586

RESUMO

BACKGROUND: Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. RESULTS: Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. CONCLUSIONS: Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology.


Assuntos
Perfilação da Expressão Gênica/métodos , Heterópteros/genética , Proteínas de Insetos/genética , Análise de Sequência de RNA/métodos , Animais , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Feminino , Transferência Genética Horizontal , Heterópteros/microbiologia , Espécies Introduzidas , Masculino , Dados de Sequência Molecular , Filogenia , Simbiose
9.
Emerg Infect Dis ; 20(3): 364-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24565502

RESUMO

Three recently sequenced strains isolated from patients during an outbreak of Mycobacterium abscessus subsp. massiliense infections at a cystic fibrosis center in the United States were compared with 6 strains from an outbreak at a cystic fibrosis center in the United Kingdom and worldwide strains. Strains from the 2 cystic fibrosis outbreaks showed high-level relatedness with each other and major-level relatedness with strains that caused soft tissue infections during an epidemic in Brazil. We identified unique single-nucleotide polymorphisms in cystic fibrosis and soft tissue outbreak strains, separate single-nucleotide polymorphisms only in cystic fibrosis outbreak strains, and unique genomic traits for each subset of isolates. Our findings highlight the necessity of identifying M. abscessus to the subspecies level and screening all cystic fibrosis isolates for relatedness to these outbreak strains. We propose 2 diagnostic strategies that use partial sequencing of rpoB and secA1 genes and a multilocus sequence typing protocol.


Assuntos
Surtos de Doenças , Infecções por Mycobacterium/epidemiologia , Mycobacterium/isolamento & purificação , Brasil , Fibrose Cística/complicações , Genoma Bacteriano , Humanos , Tipagem de Sequências Multilocus , Mycobacterium/classificação , Mycobacterium/genética , Infecções por Mycobacterium/complicações , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/microbiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 108(11): 4494-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368196

RESUMO

Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.


Assuntos
Enzimas de Restrição-Modificação do DNA/genética , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Filogenia , Recombinação Genética , Sequência de Bases , Inversão Cromossômica/genética , Segregação de Cromossomos/genética , Sequência Conservada/genética , DNA Bacteriano/genética , Conversão Gênica/genética , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Mutagênese Insercional/genética , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/patogenicidade , Óperon/genética , Especificidade da Espécie
11.
J Bacteriol ; 194(9): 2378-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22493193

RESUMO

We sequenced four strains of Bacillus subtilis and the type strains for two closely related species, Bacillus vallismortis and Bacillus mojavensis. We report the high-quality Sanger genome sequences of B. subtilis subspecies subtilis RO-NN-1 and AUSI98, B. subtilis subspecies spizizenii TU-B-10(T) and DV1-B-1, Bacillus mojavensis RO-H-1(T), and Bacillus vallismortis DV1-F-3(T).


Assuntos
Bacillus/genética , Genoma Bacteriano , Bacillus/classificação , Cromossomos Bacterianos , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular
12.
J Bacteriol ; 194(19): 5450, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965080

RESUMO

Mycobacterium massiliense (Mycobacterium abscessus group) is an emerging pathogen causing pulmonary disease and skin and soft tissue infections. We report the genome sequence of the type strain CCUG 48898.


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/classificação , Mycobacterium/genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único
13.
J Bacteriol ; 194(11): 3026-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582382

RESUMO

We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens.


Assuntos
Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Genoma Bacteriano , Sequência de Bases , Pré-Escolar , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular
14.
J Bacteriol ; 193(14): 3690, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571992

RESUMO

Chlamydia pecorum is an obligate intracellular bacterial pathogen that causes diverse disease in a wide variety of economically important mammals. We report the finished complete genome sequence of C. pecorum E58, the type strain for the species.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Chlamydia/virologia , Chlamydia/genética , Chlamydia/isolamento & purificação , Genoma Bacteriano , Animais , Sequência de Bases , Bovinos , Chlamydia/classificação , Infecções por Chlamydia/microbiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
J Bacteriol ; 193(15): 4039-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622741

RESUMO

Chlamydia psittaci is a highly prevalent avian pathogen and the cause of a potentially lethal zoonosis, causing life-threatening pneumonia in humans. We report the genome sequences of C. psittaci 6BC, the prototype strain of the species, and C. psittaci Cal10, a widely used laboratory strain.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Genoma Bacteriano , Papagaios/microbiologia , Zoonoses/microbiologia , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Psitacose/microbiologia
16.
J Bacteriol ; 193(8): 1854-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317317

RESUMO

Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage.


Assuntos
Proteínas de Bactérias/genética , Enterotoxinas/genética , Ilhas Genômicas , Staphylococcus epidermidis/genética , Fatores de Virulência/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Mutagênese Insercional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade
17.
J Bacteriol ; 193(16): 4199-213, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705586

RESUMO

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second ß-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Assuntos
Bacillus megaterium/classificação , Bacillus megaterium/genética , Genoma Bacteriano , Bacillus megaterium/metabolismo , Cromossomos Bacterianos , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética , Dados de Sequência Molecular , Filogenia , Plasmídeos , Especificidade da Espécie
18.
PLoS Genet ; 4(7): e1000141, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18654632

RESUMO

We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Fixação de Nitrogênio , Análise de Sequência de DNA , Animais , Animais não Endogâmicos , Sequência de Bases , Cromossomos Bacterianos/química , Feminino , Klebsiella pneumoniae/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Virulência
19.
Nature ; 432(7019): 910-3, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15602564

RESUMO

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.


Assuntos
Adaptação Fisiológica/genética , Genoma Bacteriano , Plâncton/genética , Plâncton/fisiologia , Roseobacter/genética , Roseobacter/fisiologia , Água do Mar/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genes Bacterianos/genética , Biologia Marinha , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Plâncton/classificação , RNA Ribossômico 16S/genética , Roseobacter/classificação
20.
Sci Rep ; 10(1): 543, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953474

RESUMO

Olfactory receptors (ORs), encoded by the largest vertebrate multigene family, enable the detection of thousands of unique odorants in the environment and consequently play a critical role in species survival. Here, we advance our knowledge of OR gene evolution in procellariiform seabirds, an avian group which relies on the sense of olfaction for critical ecological functions. We built a cosmid library of Cory's Shearwater (Calonectris borealis) genomic DNA, a model species for the study of olfaction-based navigation, and sequence OR gene-positive cosmid clones with a combination of sequencing technologies. We identified 220 OR open reading frames, 20 of which are full length, intact OR genes, and found a large ratio of partial and pseudogenes to intact OR genes (2:1), suggestive of a dynamic mode of evolution. Phylogenetic analyses revealed that while a few genes cluster with those of other sauropsid species in a γ (gamma) clade that predates the divergence of different avian lineages, most genes belong to an avian-specific γ-c clade, within which sequences cluster by species, suggesting frequent duplication and/or gene conversion events. We identified evidence of positive selection on full length γ-c clade genes. These patterns are consistent with a key role of adaptation in the functional diversification of olfactory receptor genes in a bird lineage that relies extensively on olfaction.


Assuntos
Adaptação Fisiológica/genética , Aves/genética , Aves/fisiologia , Evolução Molecular , Receptores Odorantes/genética , Animais , Modelos Moleculares , Filogenia , Estrutura Secundária de Proteína , Receptores Odorantes/química , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA