Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1859(10): 1314-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27345571

RESUMO

It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , RNA Polimerase II/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transcrição Gênica , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Centrômero/metabolismo , Centrômero/ultraestrutura , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/deficiência , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , RNA Polimerase II/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroelementos , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Proc Natl Acad Sci U S A ; 105(50): 19649-54, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064926

RESUMO

Emerging evidence suggests that components of the ubiquitin-proteasome system are involved in the regulation of gene expression. A variety of factors, including transcriptional activators, coactivators, and histones, are controlled by ubiquitylation, but the mechanisms through which this modification can function in transcription are generally unknown. Here, we report that the Saccharomyces cerevisiae protein Asr1 is a RING finger ubiquitin-ligase that binds directly to RNA polymerase II via the carboxyl-terminal domain (CTD) of the largest subunit of the enzyme. We show that interaction of Asr1 with the CTD depends on serine-5 phosphorylation within the CTD and results in ubiquitylation of at least 2 subunits of the enzyme, Rpb1 and Rpb2. Ubiquitylation by Asr1 leads to the ejection of the Rpb4/Rpb7 heterodimer from the polymerase complex and is associated with inactivation of polymerase function. Our data demonstrate that ubiquitylation can directly alter the subunit composition of a core component of the transcriptional machinery and provide a paradigm for how ubiquitin can influence gene activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Ubiquitina/metabolismo
3.
Rev Prat ; 66(4): 400, 2016 Apr 20.
Artigo em Francês | MEDLINE | ID: mdl-30969097
4.
DNA Repair (Amst) ; 8(4): 444-8, 2009 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-19272841

RESUMO

The presence of DNA damage within an actively transcribed gene poses an immediate threat to cellular viability. Bulky DNA adducts, such as those induced by ultraviolet light, can profoundly influence patterns of gene expression by causing the irreversible arrest of RNA polymerase II at sites of DNA damage. It is critical that processes exist to either specifically repair transcribed genes or clear stalled RNA polymerase, so that general repair can occur and transcription resume. A growing body of evidence indicates that clearance of stalled polymerase is achieved, in part, by ubiquitin-mediated destruction of the largest subunit of RNA polymerase II. In this review, we shall discuss how an intimate connection between RNA polymerase II and the ubiquitylation machinery acts to restore normal transcription after DNA damage, and other forms of transcriptional arrest, has occurred.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Ubiquitinação/fisiologia , Adutos de DNA/metabolismo , Adutos de DNA/efeitos da radiação , Humanos , RNA Polimerase II/metabolismo , Ubiquitina/metabolismo , Raios Ultravioleta
5.
Int J Dev Biol ; 62(6-7-8): 491-505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938761

RESUMO

Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.


Assuntos
Caenorhabditis elegans/fisiologia , Plasticidade Celular/fisiologia , Proliferação de Células/fisiologia , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Axônios/fisiologia , Caenorhabditis elegans/citologia , Transdiferenciação Celular/fisiologia , Regeneração Nervosa/fisiologia
6.
Nat Cell Biol ; 20(4): 432-442, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531309

RESUMO

The acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remain unclear. We have uncovered a mechanism that regulates NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter-cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the G1/S cyclin gene CLN2 in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter, but not in mother, cells. We propose that deacetylation modulates transport-dependent and transport-independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.


Assuntos
Ciclo Celular , Mitose , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Poro Nuclear/genética , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo
7.
BMC Biol ; 4: 9, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16613610

RESUMO

BACKGROUND: Polycomb-group genes (PcG) encode proteins that maintain homeotic (Hox) gene repression throughout development. Conversely, trithorax-group (trxG) genes encode positive factors required for maintenance of long term Hox gene activation. Both kinds of factors bind chromatin regions called maintenance elements (ME). Our previous work has shown that corto, which codes for a chromodomain protein, and dsp1, which codes for an HMGB protein, belong to a class of genes called the Enhancers of trithorax and Polycomb (ETP) that interact with both PcG and trxG. Moreover, dsp1 interacts with the Hox gene Scr, the DSP1 protein is present on a Scr ME in S2 cells but not in embryos. To understand better the role of ETP, we addressed genetic and molecular interactions between corto and dsp1. RESULTS: We show that Corto and DSP1 proteins co-localize at 91 sites on polytene chromosomes and co-immunoprecipitate in embryos. They interact directly through the DSP1 HMG-boxes and the amino-part of Corto, which contains a chromodomain. In order to search for a common target, we performed a genetic interaction analysis. We observed that corto mutants suppressed dsp11 sex comb phenotypes and enhanced AntpScx phenotypes, suggesting that corto and dsp1 are simultaneously involved in the regulation of Scr. Using chromatin immunoprecipitation of the Scr ME, we found that Corto was present on this ME both in Drosophila S2 cells and in embryos, whereas DSP1 was present only in S2 cells. CONCLUSION: Our results reveal that the proteins Corto and DSP1 are differently recruited to a Scr ME depending on whether the ME is active, as seen in S2 cells, or inactive, as in most embryonic cells. The presence of a given combination of ETPs on an ME would control the recruitment of either PcG or TrxG complexes, propagating the silenced or active state.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Ligação Proteica/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Biochem ; 134(4): 583-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14607986

RESUMO

DSP1 is an HMG-like protein of Drosophila melanogaster consisting of 386 amino acids with two HMG domains at the C-terminal end. It was shown to interact with Dorsal protein through the HMG domains and to enhance its DNA binding. Each HMG domain consists of approximately 80 amino acid residues, forming three alpha helices folded into an L-shaped structure. We have compared the interaction of various truncated and mutated forms of DSP1 with the dorsal Rel homology domain (RHD). In particular, we have mutated the conserved tryptophan residue 212 or 302 in A or B boxes or the lysine-rich region ((253)KKRK(256)) of the A/B linker. Analysis by circular dichroism revealed that the protein tertiary structure is affected in these mutants. However, these mutations do not abolish the DSP1 binding to Dorsal, except if the two HMG boxes are altered, i.e., in a double mutant or in mutant isolated domain. Finally, studies on the enhancement of Dorsal DNA binding by DSP1 revealed that the DNA affinity is maximum in the presence of wild-type DSP1, is dramatically reduced when box A is altered, and is completely abolished when box B is altered.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Dicroísmo Circular , Clonagem Molecular , DNA/química , Drosophila melanogaster , Eletroforese em Gel de Poliacrilamida , Lisina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA