Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(49): 16425-16431, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843226

RESUMO

Electrochemiluminescence (ECL) behavior of luminol derivative was investigated in reduction on different electrode materials. We found that luminol and its widely used L-012 derivative, emitting at physiological pH values, exhibit strong cathodic ECL emission on iron and stainless steel electrodes with hydrogen peroxide, whereas no ECL signal was observed with other classic electrode materials (Au, Pt, and C). On a Ni electrode, a low cathodic ECL signal was observed. This points out to the essential role of iron-containing materials to enhance the cathodic ECL emission. Under the reported conditions, the cathodic ECL signal of L-012 is comparable to the classically used anodic ECL emission. Thus, dual bright ECL emissions with L-012 were obtained simultaneously in oxidation and in reduction on iron materials as imaged in a wireless bipolar electrochemistry configuration. Such an ECL system generating light emission concomitantly in oxidation and in reduction is extremely rare and it opens appealing (bio)analytical and imaging applications, in biosensing, remote detection, bipolar ECL analysis, and ECL-based cell microscopy.


Assuntos
Ferro , Luminol , Eletroquímica , Eletrodos , Fotometria
2.
Anal Chem ; 92(10): 7249-7256, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298094

RESUMO

Getting information about the fate of immobilized enzymes and the evolution of their environment during turnover is a mandatory step toward bioelectrode optimization for effective use in biodevices. We demonstrate here the proof-of-principle visual characterization of the reactivity at an enzymatic electrode thanks to fluorescence confocal laser scanning microscopy (FCLSM) implemented in situ during the electrochemical experiment. The enzymatic O2 reduction involves proton-coupled electron transfers. Therefore, fluorescence variation of a pH-dependent fluorescent dye in the electrode vicinity enables reaction visualization. Simultaneous collection of electrochemical and fluorescence signals gives valuable space- and time-resolved information. Once the technical challenges of such a coupling are overcome, in situ FCLSM affords a unique way to explore reactivity at the electrode surface and in the electrolyte volume. Unexpected features are observed, especially the pH evolution of the enzyme environment, which is also indicated by a characteristic concentration profile within the diffusion layer. This coupled approach also gives access to a cartography of the electrode surface response (i.e., heterogeneity), which cannot be obtained solely by an electrochemical means.


Assuntos
Técnicas Eletroquímicas , Hibridização in Situ Fluorescente , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxigênio/metabolismo , Eletrodos , Hypocreales/enzimologia , Microscopia Confocal , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Propriedades de Superfície
3.
Chemphyschem ; 21(7): 600-604, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32031308

RESUMO

We propose a straightforward access to a rotating light-emitting device powered by wireless electrochemistry. A magnetic stirrer is used to rotate a light-emitting diode (LED) due to the intrinsic magnetic properties of the tips that contain iron. At the same time, the LED is submitted to an electric field and acts as a bipolar electrode. The electrochemical processes that are coupled on both extremities of the LED drive an electron flow across the device, resulting in light emission. The variation of the LED alignment in time enables an alternating light emission that is directly controlled by the rotation rate. The stirring also enables a continuous mixing of the electrolyte that improves the stability of the output signal. Finally, the LED brightness can readily reveal a change of chemical composition in the electrolyte solution.

4.
Angew Chem Int Ed Engl ; 59(19): 7508-7513, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067303

RESUMO

Miniaturized autonomous chemo-electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light-emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble-induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self-propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (∇pH and ∇I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self-orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine-tuning of the dynamic behavior of these swimmers.

5.
Angew Chem Int Ed Engl ; 56(35): 10598-10601, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28628267

RESUMO

Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry.

6.
Front Psychol ; 12: 610002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746832

RESUMO

Infants' ability to monitor "sensorimotor contingencies," i.e., the sensory effects of their own actions, is an important mechanism underlying learning. One method that has been used to investigate this is the "mobile paradigm," in which a mobile above an infant's crib is activated by motion of one of the infant's limbs. Although successfully used in numerous experiments performed in infants' homes to investigate memory and other types of learning, the paradigm seems less robust for demonstrating sensitivity to sensorimotor contingencies when used in the laboratory. One purpose of the present work was to show that certain changes to the mobile paradigm would make it easier for infants to show their sensitivity to the contingency in the lab. In particular, we used proximal stimulation on infants' wrists instead of the usual mobile, and our stimulation was coincident with the limbs that caused it. Our stimulation was either on or off, i.e., not modulated by the amount the infant moved. Finally, we used a "shaping" procedure to help the infant discover the contingency. In addition to these changes in the paradigm, by analyzing infants' limb activity at 10-s resolution instead of the usual 1-min resolution, we were able to show that infants' sensitivity to the contingency became apparent already within the first minute of establishment of the contingency. Finally, we showed how two alternate measures of sensitivity to contingency based on probability of repeated movements and on "stop and go" motion strategies may be of interest for future work.

7.
Chem Sci ; 11(28): 7438-7443, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34123025

RESUMO

Asymmetrically modified Janus microparticles are presented as autonomous light emitting swimmers. The localized dissolution of hybrid magnesium/polymer objects allows combining chemiluminescence with the spontaneous production of H2 bubbles, and thus generating directed motion. These light-emitting microswimmers are synthesized by using a straightforward methodology based on bipolar electromilling, followed by indirect bipolar electrodeposition of an electrophoretic paint. An optimization of the experimental parameters enables in the first step the formation of well-defined isotropic or anisotropic Mg microparticles. Subsequently, they are asymmetrically modified by wireless deposition of an anodic paint. The degree of asymmetry of the resulting Janus particles can be fine-tuned, leading to a controlled directional motion due to anisotropic gas formation. This autonomous motion is coupled with the emission of bright orange light when Ru(bpy)3 2+ and S2O8 2- are present in the solution as chemiluminescent reagents. The light emission is based on an original process of interfacial redox-induced chemiluminescence, thus allowing an easy visualization of the swimmer trajectories.

8.
J Phys Chem Lett ; 10(18): 5318-5324, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31436997

RESUMO

There has been a very rapid development of original systems that can be remotely controlled or addressed by playing with chemical and physical concepts. Here, we present the synergetic combination of external magnetic and electric fields to promote, in a double contactless mode, the rotational motion and the concomitant generation of light emission at the level of a gold-coated iron wire. The latter can be moved by rotating magnetic fields. Simultaneously, an electric field induces its remote polarization, which triggers the local generation of electrochemiluminescence (ECL) by bipolar electrochemistry. During rotation, the motion is tracked by changes in ECL intensity as a function of the orientation of the conducting wire in the electric field. The ECL behavior of the rotating bipolar wire is rationalized by considering the angular dependence of the polarization. Unlike previously reported systems, the rotation induces enhanced ECL emission due to the convective flow produced by the motion. This demonstrates that ECL emission can be coupled to magnetically controlled rotating bipolar objects. Such dual magnetically and electrically addressable dynamic systems open exciting prospects for integrating new functions such as imaging and sensing capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA