Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 145(9): 3308-3327, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35851598

RESUMO

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas rac de Ligação ao GTP , Animais , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Fenótipo , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
2.
Mol Genet Metab ; 134(1-2): 20-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602357

RESUMO

The addition of Pompe disease (PD) and other conditions with later-onset forms to newborn screening (NBS) in the United States (US) has been controversial. NBS technology cannot discern infantile-onset PD (IOPD) from later-onset PD (LOPD) without clinical follow-up. This study explores genetic health care practitioners' (HCPs) experiences and challenges providing NBS patient care throughout the US and their resultant opinions on NBS for PD. An online survey was distributed to genetic counselors, geneticists, NBS follow-up care coordinators, and nurse practitioners caring for patients with positive NBS results for PD. Analysis of 78 surveys revealed the majority of participating HCPs support inclusion of PD on NBS. Almost all HCPs (93.3%) feel their state has sufficient resources to provide follow-up medical care for IOPD; however, only three-fourths (74.6%) believed this for LOPD. Common barriers included time lag between NBS and confirmatory results, insurance difficulties for laboratory testing, and family difficulties in seeking medical care. HCPs more frequently encountered barriers providing care for LOPD than IOPD (53.9% LOPD identified ≥3 barriers, 31.1% IOPD). HCPs also believe creation of a population of presymptomatic individuals with LOPD creates a psychological burden on the family (87.3% agree/strongly agree), unnecessary medicalization of the child (63.5% agree/strongly agree), and parental hypervigilance (68.3% agree/strongly agree). Opinions were markedly divided on the use of reproductive benefit as a justification for NBS. Participants believe additional education for pediatricians and other specialists would be beneficial in providing care for patients with both IOPD and LOPD, in addition to the creation of evidence-based official guidelines for care and supportive resources for families with LOPD.


Assuntos
Atitude , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Pessoal de Saúde/psicologia , Triagem Neonatal , Atenção à Saúde , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Recém-Nascido , Transtornos de Início Tardio
3.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182161

RESUMO

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.


Assuntos
Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Proliferação de Células , Biologia Computacional , Deficiência Intelectual/genética , Neurogênese , Deficiência Intelectual Ligada ao Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA