Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(2): 1464-1474, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460497

RESUMO

Uterine diseases and heat stress (HS) are major challenges for the dairy cow. Heat stress alters host immune resilience, making cows more susceptible to the development of uterine disease. Although HS increases the incidence of uterine disease, the mechanisms by which this occurs are unclear. We hypothesize that evaporative cooling (CL) to alleviate HS in prepartum cows has carry-over effects on postpartum innate immunity. Nulliparous pregnant Holstein heifers were assigned to receive either forced CL that resulted in cool conditions (shade with water soakers and fans; n = 14) or to remain under HS conditions (barn shade only; n = 16) for 60 d prepartum. Postpartum, all cows were housed in a freestall barn equipped with shade, water soakers, and fans. Respiratory rate and rectal temperature during the prepartum period were greater in HS heifers compared with CL heifers, indicative of HS. Although milk production was decreased in HS cows compared with CL cows, the incidence of uterine disease and content of total or pathogenic bacteria in vaginal mucus on d 7 or d 21 postpartum was not affected by treatment. Whole blood was collected on d 21 and subjected to in vitro stimulation with lipopolysaccharide. Lipopolysaccharide-induced accumulation of IL-1ß, IL-10, and MIP-1α was greater in blood collected from HS cows compared with CL cows. Our results imply that prepartum HS during late pregnancy has carry-over effects on postpartum innate immunity, which may contribute to the increased incidence of uterine disease observed in cows exposed to prepartum HS.


Assuntos
Doenças dos Bovinos , Doenças Uterinas , Bovinos , Gravidez , Animais , Feminino , Lactação/fisiologia , Lipopolissacarídeos , Temperatura Alta , Período Pós-Parto , Resposta ao Choque Térmico , Doenças Uterinas/veterinária , Leite , Dieta
2.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206013

RESUMO

Prenatal hyperthermia has immediate and long-term consequences on dairy cattle growth, immunity, and productivity. While changes in the molecular architecture are reported in the mature mammary gland (MG), any influence on early-life mammary development is unknown. Herein, we characterize the impact of late-gestation in utero heat stress on heifer mammary gross and cellular morphology at early-life developmental stages (i.e., birth and weaning). During summer, pregnant dams were exposed to environmental heat stress (shade of a free-stall barn) or offered active cooling (shade, fans, and water soakers) for 54 ± 5 d before parturition (avg. temperature-humidity index = 79). Heifer calves born to these dams were either in utero heat-stressed (IU-HT; n = 36) or in utero cooled (IU-CL; n = 37) and were managed as a single cohort thereafter. A subset of heifers was euthanized at birth (d0; n = 8/treatment; 4.6 ± 2.3 h after birth) and after weaning (d63; n = 8/treatment; 63.0 ± 1.5 d) to harvest the whole MG. An ultrasound of rear mammary parenchyma (MPAR) was taken prior to d63 and correlated to harvested MPAR cross-sectional area and weight. Portions of mammary fat pad (MFP) and MPAR were preserved for compositional and histological analysis, including ductal structure number and cross-sectional area, connective tissue area, and adipocyte number and cross-sectional area. Cellular proliferation in MPAR was assessed via Ki-67 immunohistochemistry. Relative to IU-CL heifers, the MGs of IU-HT heifers were shorter in length at d0 and d63 (P ≤ 0.02). There were moderate correlations between d63 ultrasound and harvest measures. The IU-HT heifers had reduced MG and MFP mass at d0 and d63 (P ≤ 0.05), whereas MPAR mass was reduced only at d0 (P = 0.01). IU-HT heifers had greater MPAR protein and DNA content at d63 (P ≤ 0.04), but there were no MFP compositional differences (P ≥ 0.12). At d0, IU-HT heifers had fewer MPAR ductal structures (P ≤ 0.06), but there were no differences at d63. Yet, MPAR luminal and total ductal structure cross-sectional areas of IU-HT heifers were reduced at both d0 and d63 (P ≤ 0.01). The MFP adipocytes of IU-HT heifers were smaller at d0 (P ≤ 0.01), but differences were not detected at d63. The IU-HT heifers had diminished MPAR total, stromal, and epithelial cellular proliferation at both d0 and d63 (P < 0.01). Prenatal hyperthermia derails dairy calf early-life mammary development with potential carry-over consequences on future synthetic capacity.


Late-gestation in utero heat stress in dairy cattle negatively affects the mammary microstructure and milk yield at maturity, but investigation into early-life windows of mammary development is needed to fully characterize the lifelong consequences of intrauterine heat stress on the mammary gland (MG). The present study quantified mammary gross morphology and mammary fat pad and parenchyma composition, tissue microstructure, and cellular proliferation at birth and after weaning from heifers exposed to late-gestation prenatal hyperthermia. The whole MGs and fat pads of in utero heat-stressed heifers are lighter across early life relative to in utero cooled heifers. The mammary parenchyma is smaller at birth with stunted ductal development and cellular proliferation at birth and after weaning. These impairments may limit later mammary epithelial development and impact long-term productivity.


Assuntos
Transtornos de Estresse por Calor , Hipertermia Induzida , Animais , Bovinos , DNA , Feminino , Transtornos de Estresse por Calor/veterinária , Temperatura Alta , Hipertermia Induzida/veterinária , Antígeno Ki-67/metabolismo , Lactação , Leite/metabolismo , Parto , Gravidez , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA