Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 126: 103879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429391

RESUMO

All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Fator 1 de Elongação de Peptídeos , Animais , Humanos , Camundongos , Mutação , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
2.
Hum Mol Genet ; 29(10): 1592-1606, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32160274

RESUMO

Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Homozigoto , Humanos , Deficiência Intelectual/patologia , Camundongos , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179821

RESUMO

De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.


Assuntos
Transtornos do Neurodesenvolvimento , Convulsões , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Knockout , Fibras Musculares Esqueléticas , Mutação/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/genética
4.
Sci Rep ; 7: 46019, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378778

RESUMO

De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/- mice, showing that the mutant protein is essentially non-functional.


Assuntos
Alelos , Morte Súbita , Mutação/genética , Fator 1 de Elongação de Peptídeos/genética , Convulsões/genética , Animais , Sequência de Bases , Peso Corporal , Sistemas CRISPR-Cas/genética , Edição de Genes , Regulação da Expressão Gênica , Genoma , Genótipo , Camundongos , Degeneração Neural/patologia , Fator 1 de Elongação de Peptídeos/metabolismo , Medula Espinal/patologia
5.
Wellcome Open Res ; 1: 13, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976757

RESUMO

The recent identification of multiple new genetic causes of neurological disorders highlights the need for model systems that give experimental access to the underlying biology. In particular, the ability to couple disease-causing mutations with human neuronal differentiation systems would be beneficial. Gene targeting is a well-known approach for dissecting gene function, but low rates of homologous recombination in somatic cells (including neuronal cells) have traditionally impeded the development of robust cellular models of neurological disorders. Recently, however, CRISPR/Cas9 gene editing technologies have expanded the number of systems within which gene targeting is possible. Here we adopt as a model system LUHMES cells, a commercially available diploid human female mesencephalic cell line that differentiates into homogeneous mature neurons in 1-2 weeks. We describe optimised methods for transfection and selection of neuronal progenitor cells carrying targeted genomic alterations using CRISPR/Cas9 technology. By targeting the endogenous X-linked MECP2 locus, we introduced four independent missense mutations that cause the autism spectrum disorder Rett syndrome and observed the desired genetic structure in 3-26% of selected clones, including gene targeting of the inactive X chromosome. Similar efficiencies were achieved by introducing neurodevelopmental disorder-causing mutations at the autosomal EEF1A2 locus on chromosome 20. Our results indicate that efficiency of genetic "knock-in" is determined by the location of the mutation within the donor DNA molecule. Furthermore, we successfully introduced an mCherry tag at the MECP2 locus to yield a fusion protein, demonstrating that larger insertions are also straightforward in this system. We suggest that our optimised methods for altering the genome of LUHMES cells make them an attractive model for the study of neurogenetic disorders.

6.
J Invest Dermatol ; 132(12): 2838-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22810305

RESUMO

Although it is understood that endogenous IGF-1 is involved in the wound repair process, the effects of exogenous IGF-1 administration on wound repair remain largely unclear. In addition, the signaling links between IGF-1 receptor (IGF-1R) and estrogen receptors (ERs), which have been elucidated in other systems, have yet to be explored in the context of skin repair. In this study, we show that locally administered IGF-1 promotes wound repair in an estrogen-deprived animal model, the ovariectomized (Ovx) mouse, principally by dampening the local inflammatory response and promoting re-epithelialization. Using specific IGF-1R and ER antagonists in vivo, we reveal that IGF-1-mediated effects on re-epithelialization are directly mediated by IGF-1R. By contrast, the anti-inflammatory effects of IGF-1 are predominantly via the ERs, in particular ERα. Crucially, in ERα-null mice, IGF-1 fails to promote healing, and local inflammation is increased. Our findings illustrate the complex interactions between IGF-1 and estrogen in skin. The fact that IGF-1 may compensate for estrogen deficiency in wound repair, and potentially other contexts, is an important consideration for the treatment of postmenopausal pathology.


Assuntos
Dermatite/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/imunologia , Cicatrização/imunologia , Animais , Células Cultivadas , Dermatite/tratamento farmacológico , Derme/citologia , Derme/imunologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Estrogênios/deficiência , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Ovariectomia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
7.
PLoS One ; 7(7): e41917, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848658

RESUMO

Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.


Assuntos
Envelhecimento/genética , Haploinsuficiência , Músculos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Cruzamento , Regulação para Baixo , Feminino , Força da Mão/fisiologia , Heterozigoto , Masculino , Camundongos , Músculos/fisiologia , Fenótipo , Teste de Desempenho do Rota-Rod , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA