Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34957674

RESUMO

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Biomassa , Eutrofização , Nitrogênio , Nutrientes
2.
Nature ; 529(7586): 390-3, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26760203

RESUMO

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Assuntos
Biodiversidade , Pradaria , Modelos Biológicos , Plantas/classificação , Plantas/metabolismo , Comportamento Competitivo , Geografia
3.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
4.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32786128

RESUMO

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Assuntos
Nitrogênio , Solo , Animais , Ecossistema , Fertilização , Pradaria , Herbivoria , Humanos , Nitrogênio/análise
5.
Nature ; 508(7497): 521-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24531763

RESUMO

Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.


Assuntos
Biodiversidade , Eutrofização , Fertilizantes/efeitos adversos , Poaceae , Animais , Biomassa , Clima , Eutrofização/efeitos dos fármacos , Geografia , Cooperação Internacional , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Fatores de Tempo
6.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670649

RESUMO

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Assuntos
Biodiversidade , Eutrofização/efeitos da radiação , Herbivoria/fisiologia , Luz , Plantas/metabolismo , Plantas/efeitos da radiação , Poaceae , Clima , Eutrofização/efeitos dos fármacos , Geografia , Atividades Humanas , Internacionalidade , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/efeitos da radiação , Fatores de Tempo
7.
Ecology ; 100(1): e02547, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30488947

RESUMO

Habitat conversion and fragmentation threaten biodiversity and disrupt species interactions. While parasites are recognized as ecologically important, the impacts of fragmentation on parasitism are poorly understood relative to other species interactions. This lack of understanding is in part due to confounding landscape factors that accompany fragmentation. Fragmentation experiments provide the opportunity to fill this knowledge gap by mechanistically testing how fragmentation affects parasitism while controlling landscape factors. In a large-scale, long-term experiment, we asked how fragmentation affects a host-parasite interaction between a skink and a parasitic nematode, which is trophically transmitted via a terrestrial amphipod intermediate host. We expected that previously observed amphipod declines resulting from fragmentation would result in decreased transmission of nematodes to skinks. In agreement, we found that nematodes were absent among skinks in the cleared matrix and that infections in fragments were about one quarter of those in continuous forest. Amphipods found in gut contents of skinks and collected from pitfall traps mirrored this pattern. A structural equation model supported the expectation that fragmentation disrupted this interaction by altering the abundance of amphipods and suggested that other variables are likely also important in mediating this effect. These findings advance understanding of how landscape change affects parasitism.


Assuntos
Lagartos , Infecções por Nematoides , Animais , Austrália , Biodiversidade , Ecossistema
8.
Ecology ; 98(3): 807-819, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27987325

RESUMO

Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.


Assuntos
Ecossistema , Animais , Biodiversidade , Besouros
9.
Ecol Lett ; 16(4): 513-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23347060

RESUMO

Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.


Assuntos
Poaceae/fisiologia , Animais , Ecossistema , Fertilizantes , Herbivoria , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional
10.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038796

RESUMO

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Dispersão Vegetal , Poaceae/fisiologia , Biodiversidade
11.
Nat Commun ; 14(1): 3516, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316485

RESUMO

All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.


Assuntos
Herbivoria , Microbiota , Biomassa , Nutrientes , Solo
12.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147282

RESUMO

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Assuntos
Biodiversidade , Ecossistema , Plantas , Causalidade , Biomassa
13.
Commun Biol ; 6(1): 1220, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040868

RESUMO

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Assuntos
Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , Biodiversidade
14.
Ecology ; 103(9): e3758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35581950

RESUMO

Habitat loss and fragmentation are likely to seriously impact parasites, a less studied but critical component of ecosystems, yet we lack long-term experimental evidence. Parasites structure communities, increase connectivity in food webs, and account for a large proportion of an ecosystem's total biomass. Food web models predict that parasites with multiple obligate hosts are at greater risk of extinction because the local extinction, or reduction in abundance, of any host will result in a life-cycle bottleneck for the parasite. We examine the response of a parasite and its multiple hosts to forest fragmentation over 26 years in the Wog Wog Habitat Fragmentation Experiment in southeastern Australia. The parasite is the nematode Hedruris wogwogensis, its intermediate host is the amphipod, Arcitalitrus sylvaticus, and its definitive host is the skink, Lampropholis guichenoti. In the first decade after fragmentation, nematodes completely disappeared from the matrix (plantation forestry) and all but disappeared from their definitive host (skinks) in fragments, and by the third decade after fragmentation had not appreciably recovered anywhere in the fragmented landscape compared to continuous forest. The low prevalence of the nematode in the fragmented landscape was associated with the low abundance of one or the other host in different decades: low abundance of the intermediate host (amphipod) in the first decade and low abundance of the definitive host (skink) in the third decade. In turn, the low abundance of each host was associated with changes to the abiotic environment over time due largely to the dynamically changing matrix as the plantation trees grew. Our study provides rare long-term experimental evidence of how disturbance can cause local extinction in parasites with life cycles dependent on more than one host species through population bottlenecks at any life stage. Mismatches in the abundance of multiple hosts over time are likely to be common following disturbance, thus causing parasites with complex life cycles to be particularly susceptible to habitat fragmentation and other disturbances. The integrity of food webs, communities, and ecosystems in fragmented landscapes may be more compromised than presently appreciated due to the sensitivity of parasites to habitat fragmentation.


Assuntos
Lagartos , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Árvores
15.
Ecology ; 103(6): e3644, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35072946

RESUMO

Soils derived from ultramafic parent materials (hereafter serpentine) provide habitat for unique plant communities containing species with adaptations to the low nutrient levels, high magnesium : calcium ratios, and high metal content (Ni, Zn) that characterize serpentine. Plants on serpentine have long been studied in evolution and ecology, and plants adapted to serpentine contribute disproportionately to plant diversity in many parts of the world. In 2000-2003, serpentine plant communities were sampled at 107 locations representing the full range of occurrence of serpentine in California, USA, spanning large gradients in climate. In 2009-2010, plant communities were similarly sampled at 97 locations on nonserpentine soil, near to and paired with 97 of the serpentine sampling locations. (Some serpentine locations were revisited in 2009-2010 to assess the degree of change since 2000-2003, which was minimal.) At each serpentine or nonserpentine location, a north- and a south-facing 50 × 10 m plot were sampled. This design produced 97 "sites" each consisting of four "plots" (north-south exposure, serpentine-nonserpentine soil). All plots were initially visited three or more times over two years to record plant diversity and cover, and a subset were revisited in 2014 to examine community change after a drought. The original question guiding the study was how plant diversity is shaped by the spatially patchy nature of the serpentine habitat. Subsequently, we investigated how climate drives plant diversity at multiple scales (within locations, between locations on the same and different soil types, and across entire regions) and at different levels of organization (taxonomic, functional, and phylogenetic). There are no copyright restrictions and users should cite this data paper in publications that result from use of the data.


Assuntos
Plantas , Solo , Ecossistema , Filogenia , Microbiologia do Solo
16.
Ecol Lett ; 14(1): 19-28, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21070562

RESUMO

A recent increase in studies of ß diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of ß diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in ß diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in ß diversity.


Assuntos
Biodiversidade , Modelos Biológicos , Recifes de Corais , Ecologia , El Niño Oscilação Sul , Indonésia , Análise Multivariada
17.
Ecol Lett ; 14(3): 274-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21281419

RESUMO

Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.


Assuntos
Espécies Introduzidas , Magnoliopsida , Densidade Demográfica , Biota , Poaceae
18.
J Anim Ecol ; 78(5): 937-44, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19457019

RESUMO

1. Modern theories of species coexistence recognize the importance of environmental heterogeneity. 2. Despite the existence of many observational studies, few experimental studies have evaluated the extent to which, and mechanisms by which, fixed spatial heterogeneity increases community diversity and alters community structure. 3. In experimental protist communities, we found that non-spatial mechanisms unrelated to heterogeneity were responsible for a large component of baseline diversity. Above this baseline, fixed spatial heterogeneity produced small but predictable increases in metacommunity diversity through species sorting, while heterogeneity and dispersal together altered local community structure (composition and relative abundance) through mass effects. 4. Our study illustrates that heterogeneity is not always the strongest driver of diversity, while experimentally demonstrating mechanisms by which heterogeneity alters community structure.


Assuntos
Ecossistema , Eucariotos/fisiologia , Animais , Biodiversidade , Dinâmica Populacional
19.
Ecol Lett ; 11(4): 348-56, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18201199

RESUMO

Disturbance is an important factor influencing diversity patterns. Ecological theory predicts that diversity peaks at intermediate levels of disturbance, but this pattern is not present in a majority of empirical tests and can be influenced by the level of ecosystem productivity. We experimentally tested the effects of disturbance on diversity and show that species' autecological traits and community relations predicted species loss. We found that - alone or in concert - increasing disturbance intensity or frequency, or decreasing productivity, reduced diversity. Our species did not exhibit a clear competition-colonization trade-off, and intrinsic growth rate was a more important predictor of response to disturbance and productivity than measures of competitive ability. Furthermore, competitive ability was more important in predicting responses when, in addition to killing individuals, disturbance returned nutrients to the ecosystem. Our results demonstrate that species' traits can help resolve conflicting patterns in the response of diversity to disturbance and productivity.


Assuntos
Bactérias , Biodiversidade , Eucariotos , Animais , Biomassa , Tamanho Corporal , Comportamento Competitivo , Meio Ambiente , Reprodução
20.
Ecology ; 89(3): 754-62, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18459338

RESUMO

Biotic interactions, such as competition and herbivory, can limit plant species ranges to a subset of edaphically suitable habitats, termed the realized niche. Here we explored the role that herbivores play in restricting the niche of serpentine ecotypes of the native California annual Collinsia sparsiflora. We planted seeds from four populations into a range of natural field environments that varied in the presence/absence of naturally occurring C. sparsiflora and in predicted suitability for growth and survival of the serpentine ecotype of C. sparsiflora. Path analysis was then used to model the direct and herbivore-mediated indirect effects of environmental variables on the survival of C. sparsiflora serpentine ecotypes. We found that C. sparsiflora received more herbivory when planted into areas where serpentine ecotypes of C. sparsiflora were not predicted to persist, and that increased herbivory was associated with decreased survival, suggesting that herbivores may limit the distribution of C. sparsiflora serpentine ecotypes. Additionally, we demonstrated that edaphic environmental variables impacted the survival of C. sparsiflora serpentine ecotypes both directly and indirectly, by altering interactions with herbivores. These indirect effects were probably trait-mediated and probably occurred because edaphic factors may influence plant traits that, in turn, alter attractiveness to herbivores. Although the magnitude of direct effects exceeded the magnitude of indirect effects, many strong herbivore-mediated indirect effects were detected. Thus, interactions between the abiotic environment and insect herbivory contributed to restricting the niche of C. sparsiflora serpentine ecotypes to a subset of available habitat.


Assuntos
Adaptação Fisiológica , Ecossistema , Comportamento Predatório/fisiologia , Scrophulariaceae/fisiologia , Animais , Asbestos Serpentinas , Meio Ambiente , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas Comestíveis , Dinâmica Populacional , Crescimento Demográfico , Scrophulariaceae/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA