Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Microbiol ; 21(1): 97, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784980

RESUMO

BACKGROUND: Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. RESULTS: Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. CONCLUSIONS: Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen.


Assuntos
Bacteriófagos/genética , Biodiversidade , Pasteurella multocida/virologia , Animais , Bacteriófagos/classificação , Aves , Bovinos , Tipagem Molecular , Ovinos , Suínos
2.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962401

RESUMO

The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.


Assuntos
Células Epiteliais/microbiologia , Mannheimia haemolytica/patogenicidade , Pasteurelose Pneumônica/microbiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Bovinos , Mannheimia haemolytica/crescimento & desenvolvimento , Mannheimia haemolytica/fisiologia , Sistema Respiratório/microbiologia , Virulência
3.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884756

RESUMO

A multilocus variable-number tandem-repeat analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over 7 decades, was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin, and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, subclustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific subclustering further indicates persistent colonization of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less-virulent or avirulent strains.IMPORTANCE This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context.


Assuntos
Doenças dos Peixes/transmissão , Especificidade de Hospedeiro , Repetições Minissatélites , Yersiniose/veterinária , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidade , Animais , Doenças dos Peixes/microbiologia , Geografia , Noruega , Oncorhynchus mykiss/microbiologia , Reação em Cadeia da Polimerase , Salmo salar/microbiologia , Sorogrupo , Yersiniose/microbiologia
4.
Appl Environ Microbiol ; 82(19): 5785-94, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451448

RESUMO

UNLABELLED: Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. IMPORTANCE: Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are based on serotypes specific for this species. A wider range of serotypes is responsible for infection in Atlantic salmon, but very little is known about the diversity of these strains and their relationships to those recovered from rainbow trout. In the present study, we demonstrate that Y. ruckeri isolates recovered from diseased Atlantic salmon in Scotland are more diverse than those from rainbow trout; furthermore, isolates from the two species represent distinct subpopulations. In addition, a new O serotype was identified that is responsible for a significant proportion of the disease in Atlantic salmon. Our findings are likely to have important implications for the development of improved vaccines against Y. ruckeri.


Assuntos
Doenças dos Peixes/epidemiologia , Oncorhynchus mykiss , Salmo salar , Yersiniose/veterinária , Yersinia ruckeri/fisiologia , Animais , Doenças dos Peixes/microbiologia , Prevalência , Escócia/epidemiologia , Yersiniose/epidemiologia , Yersiniose/microbiologia , Yersinia ruckeri/genética
5.
Appl Environ Microbiol ; 79(7): 2358-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377932

RESUMO

Vibrio parahaemolyticus is a seafood-borne pathogenic bacterium that is a major cause of gastroenteritis worldwide. We investigated the genetic and evolutionary relationships of 101 V. parahaemolyticus isolates originating from clinical, human carrier, and various environmental and seafood production sources in Thailand using multilocus sequence analysis. The isolates were recovered from clinical samples (n = 15), healthy human carriers (n = 18), various types of fresh seafood (n = 18), frozen shrimp (n = 16), fresh-farmed shrimp tissue (n = 18), and shrimp farm water (n = 16). Phylogenetic analysis revealed a high degree of genetic diversity within the V. parahaemolyticus population, although isolates recovered from clinical samples and from farmed shrimp and water samples represented distinct clusters. The tight clustering of the clinical isolates suggests that disease-causing isolates are not a random sample of the environmental reservoir, although the source of infection remains unclear. Extensive serotypic diversity occurred among isolates representing the same sequence types and recovered from the same source at the same time. These findings suggest that the O- and K-antigen-encoding loci are subject to exceptionally high rates of recombination. There was also strong evidence of interspecies horizontal gene transfer and intragenic recombination involving the recA locus in a large proportion of isolates. As the majority of the intragenic recombinational exchanges involving recA occurred among clinical and carrier isolates, it is possible that the human intestinal tract serves as a potential reservoir of donor and recipient strains that is promoting horizontal DNA transfer, driving evolutionary change, and leading to the emergence of new, potentially pathogenic strains.


Assuntos
Portador Sadio/microbiologia , Tipagem de Sequências Multilocus , Alimentos Marinhos/microbiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/genética , Microbiologia da Água , Portador Sadio/epidemiologia , Análise por Conglomerados , Variação Genética , Humanos , Epidemiologia Molecular , Sorotipagem , Tailândia/epidemiologia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/isolamento & purificação
6.
Infect Immun ; 79(11): 4332-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896777

RESUMO

Mannheimia haemolytica is the etiological agent of pneumonic pasteurellosis of cattle and sheep; two different OmpA subclasses, OmpA1 and OmpA2, are associated with bovine and ovine isolates, respectively. These proteins differ at the distal ends of four external loops, are involved in adherence, and are likely to play important roles in host adaptation. M. haemolytica is surrounded by a polysaccharide capsule, and the degree of OmpA surface exposure is unknown. To investigate surface exposure and immune specificity of OmpA among bovine and ovine M. haemolytica isolates, recombinant proteins representing the transmembrane domain of OmpA from a bovine serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were overexpressed, purified, and used to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. Immunogold electron microscopy and immunofluorescence techniques demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked by the polysaccharide capsule, in a selection of M. haemolytica isolates of various serotypes and grown under different growth conditions. To explore epitope specificity, anti-rOmpA1 and anti-rOmpA2 antibodies were cross-absorbed with the heterologous isolate to remove cross-reacting antibodies. These cross-absorbed antibodies were highly specific and recognized only the OmpA protein of the homologous isolate in Western blot assays. A wider examination of the binding specificities of these antibodies for M. haemolytica isolates representing different OmpA subclasses revealed that cross-absorbed anti-rOmpA1 antibodies recognized OmpA1-type proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognized OmpA2-type proteins but not OmpA1-type proteins. Our results demonstrate that OmpA1 and OmpA2 are surface exposed and could potentially bind to different receptors in cattle and sheep.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Epitopos/metabolismo , Mannheimia haemolytica/classificação , Pasteurelose Pneumônica/microbiologia , Doenças dos Ovinos/microbiologia , Animais , Anticorpos Antibacterianos/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Bovinos , Epitopos/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Mannheimia haemolytica/imunologia , Mannheimia haemolytica/metabolismo , Ovinos , Especificidade da Espécie
7.
Microbiology (Reading) ; 157(Pt 1): 123-135, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20884693

RESUMO

The tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8% variation) polymorphic nucleotide sites and 482 (32.1% variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it's distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene, and this probably reflects selection for a conserved TbpA protein that provides effective iron uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates, suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates, suggesting a recent and common evolutionary origin.


Assuntos
Transferência Genética Horizontal , Genes Bacterianos , Pasteurellaceae/genética , Recombinação Genética , Alelos , Animais , Proteínas de Bactérias , Sequência de Bases , Bovinos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Evolução Molecular , Genótipo , Dados de Sequência Molecular , Óperon , Pasteurellaceae/isolamento & purificação , Polimorfismo Genético , Análise de Sequência de DNA , Homologia de Sequência , Ovinos , Proteína A de Ligação a Transferrina/genética , Proteína B de Ligação a Transferrina/genética
8.
Sci Rep ; 11(1): 3493, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568758

RESUMO

Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Oncorhynchus mykiss/genética , Yersiniose/virologia , Yersinia ruckeri/virologia , Animais , Doenças dos Peixes/virologia , Especificidade de Hospedeiro/imunologia , Filogenia , Sorogrupo , Virulência/genética , Virulência/fisiologia
9.
Sci Rep ; 10(1): 14971, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917945

RESUMO

Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.


Assuntos
Células Epiteliais/microbiologia , Interações Hospedeiro-Parasita , Mannheimia haemolytica , Infecções por Pasteurellaceae/microbiologia , Doenças dos Ovinos/microbiologia , Ovinos/microbiologia , Traqueia/microbiologia , Animais , Mannheimia haemolytica/patogenicidade , Mannheimia haemolytica/fisiologia , Infecções por Pasteurellaceae/veterinária
10.
BMC Evol Biol ; 9: 121, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19480674

RESUMO

BACKGROUND: The Mannheimia species encompass a wide variety of bacterial lifestyles, including opportunistic pathogens and commensals of the ruminant respiratory tract, commensals of the ovine rumen, and pathogens of the ruminant integument. Here we present a scenario for the evolution of the leukotoxin promoter among representatives of the five species within genus Mannheimia. We also consider how the evolution of the leukotoxin operon fits with the evolution and maintenance of virulence. RESULTS: The alignment of the intergenic regions upstream of the leukotoxin genes showed significant sequence and positional conservation over a 225-bp stretch immediately proximal to the transcriptional start site of the lktC gene among all Mannheimia strains. However, in the course of the Mannheimia genome evolution, the acquisition of individual noncoding regions upstream of the conserved promoter region has occurred. The rate of evolution estimated branch by branch suggests that the conserved promoter may be affected to different extents by the types of natural selection that potentially operate in regulatory regions. Tandem repeats upstream of the core promoter were confined to M. haemolytica with a strong association between the sequence of the repeat units, the number of repeat units per promoter, and the phylogenetic history of this species. CONCLUSION: The mode of evolution of the intergenic regions upstream of the leukotoxin genes appears to be highly dependent on the lifestyle of the bacterium. Transition from avirulence to virulence has occurred at least once in M. haemolytica with some evolutionary success of bovine serotype A1/A6 strains. Our analysis suggests that changes in cis-regulatory systems have contributed to the derived virulence phenotype by allowing phase-variable expression of the leukotoxin protein. We propose models for how phase shifting and the associated virulence could facilitate transmission to the nasopharynx of new hosts.


Assuntos
Evolução Molecular , Exotoxinas/genética , Mannheimia/genética , Regiões Promotoras Genéticas , Toxinas Bacterianas/genética , Sequência de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Dis Aquat Organ ; 84(1): 25-33, 2009 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-19419004

RESUMO

There have been increased reports of outbreaks of enteric redmouth disease (ERM) caused by Yersinia ruckeri in previously vaccinated salmonids in Europe, with some of these outbreaks being attributed to emergent non-motile, Tween 80-negative, biotype 2 isolates. To gain information about their likely origins and relationships, a geographically and temporally diverse collection of isolates were characterised by serotyping, biotyping, pulsed-field gel electrophoresis (PFGE) and outer membrane protein (OMP) profiling. A total of 44 pulsotypes were identified from 160 isolates by PFGE, using the restriction enzyme NotI. Serotype O1 isolates responsible for ERM in rainbow trout in both the US and Europe, and including biotype 2 isolates, represented a distinct subgroup of similar pulsotypes. Biotype 2 isolates, responsible for outbreaks of the disease in rainbow trout in the UK, Denmark and Spain, had different pulsotypes, suggesting that they represented different clones that may have emerged separately. Danish biotype 2 isolates recovered since 1995 were indistinguishable by PFGE from the dominant biotype 1 clone responsible for the majority of outbreaks in Denmark and the rest of mainland Europe. In contrast, US biotype 2 isolate YRNC10 had an identical pulsotype and OMP profile to UK biotype 2 isolates, suggesting that there had been exchange of these isolates between the UK and the US in the past. UK Atlantic salmon isolates were genetically and serologically diverse, with 12 distinct pulsotypes identified among 32 isolates.


Assuntos
Yersinia ruckeri/classificação , Yersinia ruckeri/genética , Animais , Eletroforese em Gel de Campo Pulsado , Europa (Continente)/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Microscopia Eletrônica de Transmissão , Salmonidae/microbiologia , Reino Unido/epidemiologia , Yersiniose/epidemiologia , Yersiniose/microbiologia , Yersiniose/veterinária
12.
J Proteomics ; 199: 135-147, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30831250

RESUMO

Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Doenças dos Peixes/microbiologia , Proteoma/análise , Yersinia ruckeri/química , Animais , Biologia Computacional , Oncorhynchus mykiss/microbiologia , Proteômica , Salmão/microbiologia , Virulência , Yersiniose , Yersinia ruckeri/isolamento & purificação , Yersinia ruckeri/patogenicidade , Yersinia ruckeri/ultraestrutura
13.
PLoS One ; 13(3): e0193998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518140

RESUMO

Respiratory tract infections are of significant concern in the agriculture industry. There is a requirement for the development of well-characterised in vitro epithelial cell culture models in order to dissect the diverse molecular interactions occurring at the host-pathogen interface in airway epithelia. We have analysed key factors that influence growth and differentiation of ovine tracheal epithelial cells in an air-liquid interface (ALI) culture system. Cellular differentiation was assessed at 21 days post-ALI, a time-point which we have previously shown to be sufficient for differentiation in standard growth conditions. We identified a dose-dependent response to epidermal growth factor (EGF) in terms of both epithelial thickening and ciliation levels. Maximal ciliation levels were observed with 25 ng ml-1 EGF. We identified a strict requirement for retinoic acid (RA) in epithelial differentiation as RA exclusion resulted in the formation of a stratified squamous epithelium, devoid of cilia. The pore-density of the growth substrate also had an influence on differentiation as high pore-density inserts yielded higher levels of ciliation and more uniform cell layers than low pore-density inserts. Differentiation was also improved by culturing the cells in an atmosphere of sub-ambient oxygen concentration. We compared two submerged growth media and observed differences in the rate of proliferation/expansion, barrier formation and also in terminal differentiation. Taken together, these results indicate important differences between the response of ovine tracheal epithelial cells and other previously described airway epithelial models, to a variety of environmental conditions. These data also indicate that the phenotype of ovine tracheal epithelial cells can be tailored in vitro by precise modulation of growth conditions, thereby yielding a customisable, potential infection model.


Assuntos
Meios de Cultura/farmacologia , Células Epiteliais/citologia , Cultura Primária de Células/métodos , Ovinos/anatomia & histologia , Traqueia/citologia , Ar , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Cílios/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Animais , Oxigênio/farmacologia , Porosidade , Cultura Primária de Células/instrumentação , Especificidade da Espécie , Tretinoína/farmacologia
14.
Sci Rep ; 8(1): 14893, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291311

RESUMO

There is an urgent need to develop improved, physiologically-relevant in vitro models of airway epithelia with which to better understand the pathological processes associated with infection, allergies and toxicological insults of the respiratory tract of both humans and domesticated animals. In the present study, we have characterised the proliferation and differentiation of primary bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface (ALI) at three-day intervals over a period of 42 days from the introduction of the ALI. The differentiated BBEC model was highly representative of the ex vivo epithelium from which the epithelial cells were derived; a columnar, pseudostratified epithelium that was highly reflective of native airway epithelium was formed which comprised ciliated, goblet and basal cells. The hallmark defences of the respiratory tract, namely barrier function and mucociliary clearance, were present, thus demonstrating that the model is an excellent mimic of bovine respiratory epithelium. The epithelium was fully differentiated by day 21 post-ALI and, crucially, remained healthy and stable for a further 21 days. Thus, the differentiated BBEC model has a three-week window which will allow wide-ranging and long-term experiments to be performed in the fields of infection, toxicology or general airway physiology.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Cultura Primária de Células/métodos , Mucosa Respiratória/crescimento & desenvolvimento , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Pulmão/citologia , Estudo de Prova de Conceito , Mucosa Respiratória/citologia
15.
Sci Rep ; 8(1): 853, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339818

RESUMO

Cattle are subject to economically-important respiratory tract infections by various bacterial and viral pathogens and there is an urgent need for the development of more realistic in vitro models of the bovine respiratory tract to improve our knowledge of disease pathogenesis. In the present study, we have optimized the culture conditions in serum-free medium that allow bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface to differentiate into a three-dimensional epithelium that is highly representative of the bovine airway. Epidermal growth factor was required to trigger both proliferation and differentiation of BBECs whilst retinoic acid was also essential for mucociliary differentiation. Triiodothyronine was demonstrated not to be important for the differentiation of BBECs. Oxygen concentration had a minimal effect although optimal ciliation was achieved when BBECs were cultured at 14% oxygen tension. Insert pore-density had a significant effect on the growth and differentiation of BBECs; a high-pore-density was required to trigger optimum differentiation. The established BBEC model will have wide-ranging applications for the study of bacterial and viral infections of the bovine respiratory tract; it will contribute to the development of improved vaccines and therapeutics and will reduce the use of cattle in in vivo experimentation.


Assuntos
Brônquios/citologia , Células Epiteliais/citologia , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Oxigênio/metabolismo , Tretinoína/farmacologia
16.
PLoS One ; 12(7): e0181583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746416

RESUMO

The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Traqueia/citologia , Ar , Animais , Atmosfera/química , Células Cultivadas , Cílios/fisiologia , Meios de Cultura/química , Impedância Elétrica , Células Epiteliais/ultraestrutura , Humanos , Cinética , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Muco/metabolismo , Reação do Ácido Periódico de Schiff , Ovinos , Junções Íntimas/metabolismo , Fatores de Tempo
17.
FEMS Microbiol Lett ; 260(2): 162-70, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16842340

RESUMO

The diversity of temperate bacteriophages was examined in 32 Mannheimia haemolytica, six Mannheimia glucosida and four Pasteurella trehalosi isolates. Phage particles were induced and identified by electron microscopy in 24 (75%) M. haemolytica isolates, but in only one (17%) M. glucosida and one (25%) P. trehalosi isolate. The M. haemolytica phages were relatively diverse as seven Siphoviridae, 15 Myoviridae and two Podoviridae-like phages were identified; the Myoviridae-type phages also exhibited structural variation of their tails. The bacteriophages induced in M. glucosida and P. trehalosi were of the Myoviridae type. Restriction endonuclease (RE) analysis identified nine distinct RE types among the M. haemolytica bacteriophages, providing further evidence of their relative diversity. A limited number of phages caused plaques on indicator strains and the phages exhibited a narrow host range. A subgroup of 11 bovine serotype A1 and A6 isolates contained Myoviridae-type phages of the same RE type (type A), but these differed in their abilities to infect and form plaques on the same panel of indicator strains. A P2-like phage (phiPHL213.1), representative of the RE type A phages, was identified from the incomplete M. haemolytica genome sequence. The phiPHL213.1 genome contains previously unidentified genes and represents a new member of the P2 phage family.


Assuntos
Doenças dos Bovinos/microbiologia , Caudovirales/classificação , Caudovirales/fisiologia , Variação Genética , Mannheimia haemolytica/virologia , Pasteurelose Pneumônica/microbiologia , Doenças dos Ovinos/microbiologia , Animais , Bacteriófago P2/classificação , Bacteriófago P2/genética , Bacteriófago P2/fisiologia , Bacteriófago P2/ultraestrutura , Bovinos , Caudovirales/genética , Caudovirales/ultraestrutura , DNA Viral/análise , Mannheimia haemolytica/isolamento & purificação , Microscopia Eletrônica , Mapeamento por Restrição , Ovinos , Ativação Viral
18.
Metabolomics ; 12: 75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013931

RESUMO

INTRODUCTION: Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. OBJECTIVES: The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. METHODS: The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. RESULTS: We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. CONCLUSIONS: The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.

19.
mBio ; 6(5): e00729-15, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26463159

RESUMO

UNLABELLED: Two full-scale slow sand filters (SSFs) were sampled periodically from April until November 2011 to study the spatial and temporal structures of the bacterial communities found in the filters. To monitor global changes in the microbial communities, DNA from sand samples taken at different depths and locations within the SSFs and at different filters ages was used for Illumina 16S rRNA gene sequencing. Additionally, 15 water quality parameters were monitored to assess filter performance, with functionally relevant microbial members being identified by using multivariate statistics. The bacterial diversity in the SSFs was found to be much larger than previously documented, with community composition being shaped by the characteristics of the SSFs (filter age and depth) and sampling characteristics (month, side, and distance from the influent and effluent pipes). We found that several key genera (Acidovorax, Halomonas, Sphingobium, and Sphingomonas) were associated with filter performance. In addition, at the whole-community level, a strong positive correlation was found between species evenness and filter performance. This study is the first to comprehensively characterize the microbial community of SSFs and link specific microbes to water quality parameters. In doing so, we reveal key patterns in microbial community structure that relate to overall community function. IMPORTANCE: The supply of sustainable, energy-efficient, and safe drinking water to an increasing world population is a huge challenge faced by the water industry. SSFs have been used for hundreds of years to provide a safe and reliable source of potable drinking water, with minimal energy requirements. However, a lack of knowledge pertaining to the treatment mechanisms, particularly the biological processes, underpinning SSF operation has meant that SSFs are still operated as "black boxes." Understanding these dynamics alongside performance-induced effects associated with operational differences will promote optimized SSF design, maintenance, and operation, creating more efficient and environmentally sustainable filters. Through a spatial-temporal survey of full-scale SSFs at various points of operation, we present the most detailed characterization to date of the functional microbial communities found in SSFs, linking various taxa and community metrics to optimal water quality production.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Microbiologia Ambiental , Filtração/métodos , Purificação da Água/métodos , Qualidade da Água , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Análise Espaço-Temporal
20.
PLoS One ; 10(1): e115741, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25615448

RESUMO

Meningococcal disease remains a public health burden in the UK and elsewhere. Invasive Neisseria meningitidis, isolated in Scotland between 1972 and 1998, were characterised retrospectively to examine the serogroup and clonal structure of the circulating population. 2607 isolates causing invasive disease were available for serogroup and MLST analysis whilst 2517 were available for multilocus sequence typing (MLST) analysis only. Serogroup distribution changed from year to year but serogroups B and C were dominant throughout. Serogroup B was dominant throughout the 1970s and early 1980s until serogroup C became dominant during the mid-1980s. The increase in serogroup C was not associated with one particular sequence type (ST) but was associated with a number of STs, including ST-8, ST-11, ST-206 and ST-334. This is in contrast to the increase in serogroup C disease seen in the 1990s that was due to expansion of the ST-11 clonal complex. While there was considerable diversity among the isolates (309 different STs among the 2607 isolates), a large proportion of isolates (59.9%) were associated with only 10 STs. These data highlight meningococcal diversity over time and the need for ongoing surveillance during the introduction of new meningococcal vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA