Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 41(7): 2201-2214, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34039022
2.
Circ Res ; 118(2): 230-40, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26596284

RESUMO

RATIONALE: Genetic variation at the chromosome 9p21 cardiovascular risk locus has been associated with peripheral artery disease, but its mechanism remains unknown. OBJECTIVE: To determine whether this association is secondary to an increase in atherosclerosis, or it is the result of a separate angiogenesis-related mechanism. METHODS AND RESULTS: Quantitative evaluation of human vascular samples revealed that carriers of the 9p21 risk allele possess a significantly higher burden of immature intraplaque microvessels than carriers of the ancestral allele, irrespective of lesion size or patient comorbidity. To determine whether aberrant angiogenesis also occurs under nonatherosclerotic conditions, we performed femoral artery ligation surgery in mice lacking the 9p21 candidate gene, Cdkn2b. These animals developed advanced hindlimb ischemia and digital autoamputation, secondary to a defect in the capacity of the Cdkn2b-deficient smooth muscle cell to support the developing neovessel. Microarray studies identified impaired transforming growth factor ß (TGFß) signaling in cultured cyclin-dependent kinase inhibitor 2B (CDKN2B)-deficient cells, as well as TGFß1 upregulation in the vasculature of 9p21 risk allele carriers. Molecular signaling studies indicated that loss of CDKN2B impairs the expression of the inhibitory factor, SMAD-7, which promotes downstream TGFß activation. Ultimately, this manifests in the upregulation of a poorly studied effector molecule, TGFß1-induced-1, which is a TGFß-rheostat known to have antagonistic effects on the endothelial cell and smooth muscle cell. Dual knockdown studies confirmed the reversibility of the proposed mechanism, in vitro. CONCLUSIONS: These results suggest that loss of CDKN2B may not only promote cardiovascular disease through the development of atherosclerosis but may also impair TGFß signaling and hypoxic neovessel maturation.


Assuntos
Aterosclerose/enzimologia , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neovascularização Fisiológica , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/mortalidade , Aterosclerose/patologia , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Hipóxia Celular , Células Cultivadas , Cromossomos Humanos Par 9 , Vasos Coronários/enzimologia , Vasos Coronários/patologia , Inibidor de Quinase Dependente de Ciclina p15/deficiência , Inibidor de Quinase Dependente de Ciclina p15/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Membro Posterior , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiopatologia , Neovascularização Patológica , Fenótipo , Interferência de RNA , Proteína Smad7/metabolismo , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta1/genética
3.
J Lipid Res ; 56(11): 2183-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373568

RESUMO

Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.


Assuntos
Colesterol/sangue , Pirazóis/farmacologia , Receptores de Glucagon/antagonistas & inibidores , beta-Alanina/análogos & derivados , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipercolesterolemia/induzido quimicamente , Concentração Inibidora 50 , Absorção Intestinal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirazóis/efeitos adversos , beta-Alanina/efeitos adversos , beta-Alanina/farmacologia
4.
Curr Opin Lipidol ; 22(6): 467-78, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22101558

RESUMO

PURPOSE OF REVIEW: Statin therapy is the mainstay of lipid-lowering therapy; however, many patients, particularly those at high risk, do not achieve sufficient LDL-cholesterol (LDL-C) lowering. Thus, there remains an unmet medical need for more effective and well tolerated lipid-lowering agents. Guidelines recommend combining additional lipid-lowering agents with a complementary mode of action for these patients. One approach to complementing statin therapy is combination with inhibitors that block the intestinal absorption of dietary and biliary cholesterol. This review summarizes what is currently known about intestinal sterol transporters and cholesterol absorption inhibitors (CAIs). RECENT FINDINGS: The only lipid-lowering agent currently available that specifically targets an intestinal sterol transporter (Niemann-Pick C1-like 1) is the CAI, ezetimibe. It is effective in lowering LDL-C, both when given alone and when combined with a statin. Clinical outcome data with ezetimibe combined with simvastatin have recently become available, and definitive evidence that the incremental LDL-C lowering attributable to the ezetimibe component reduces cardiovascular events beyond simvastatin alone is currently under study. Other novel CAIs have been evaluated based upon the structure and properties of ezetimibe, but none remain in development. SUMMARY: Additional lipid-lowering agents are needed to fulfill an unmet medical need for those patients who do not achieve optimal LDL-C goals on statin monotherapy. The inhibition of cholesterol absorption is an important therapeutic strategy to reduce cholesterol levels. Based upon the demonstrated lipid-altering efficacy and safety of ezetimibe, several CAIs have been identified; all to date have been discontinued due to limited efficacy.


Assuntos
Anticolesterolemiantes/uso terapêutico , Azetidinas/uso terapêutico , Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Esterol O-Aciltransferase/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Quimioterapia Combinada , Ezetimiba , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
J Lipid Res ; 52(3): 558-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21123766

RESUMO

Inhibition of cholesterol synthesis by 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR) inhibitors has been associated with an increase in intestinal cholesterol absorption. This study examined how HMG-CoAR inhibition by atorvastatin modulates expression of key genes involved in intestinal cholesterol metabolism. A crossover study was conducted in which 22 hyperlipidemic men received atorvastatin, 40 mg/day, or placebo, each for 12 weeks. Gene expression was assessed by real-time PCR using duodenal biopsy samples obtained at the end of each phase of treatment. Treatment with atorvastatin was associated with a 76% reduction in lathosterol and significant increases in sitosterol (70%). Atorvastatin significantly increased intestinal mRNA levels of HMG-CoAR (59%), LDL receptor (LDLR) (52%), PCSK9 (187%), SREBP-2 (44%), and HNF-4α (13%). Furthermore, atorvastatin significantly increased intestinal mRNA levels of NPC1L1 by 19% and decreased mRNA levels of both ABCG5 and ABCG8 by 14%. Positive correlations were observed between changes in SREBP-2 and HNF-4α expression and concurrent changes in the intestinal mRNA levels of HMG-CoAR, LDLR, and NPC1L1. These results indicate that HMG-CoAR inhibition with atorvastatin stimulates the intestinal expression of NPC1L1, LDLR, and PCSK9; increases cholesterol absorption; and reduces expression of ABCG5/8; these effects are most likely mediated by upregulation of the transcription factors SREBP-2 and HNF-4α.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Intestinos/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pirróis/farmacologia , Adulto , Atorvastatina , Colesterol/metabolismo , Esquema de Medicação , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/patologia , Ácidos Heptanoicos/administração & dosagem , Humanos , Hiperlipidemias/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Proteínas de Membrana Transportadoras , Pirróis/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
J Lipid Res ; 52(4): 679-87, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21262787

RESUMO

Reducing circulating LDL-cholesterol (LDL-c) reduces the risk of cardiovascular disease in people with hypercholesterolemia. Current approaches to reduce circulating LDL-c include statins, which inhibit cholesterol synthesis, and ezetimibe, which blocks cholesterol absorption. Both elevate serum PCSK9 protein levels in patients, which could attenuate their efficacy by reducing the amount of cholesterol cleared from circulation. To determine whether PCSK9 inhibition could enhance LDL-c lowering of both statins and ezetimibe, we utilized small interfering RNAs (siRNAs) to knock down Pcsk9, together with ezetimibe, rosuvastatin, and an ezetimibe/rosuvastatin combination in a mouse model with a human-like lipid profile. We found that ezetimibe, rosuvastatin, and ezetimibe/rosuvastatin combined lower serum cholesterol but induce the expression of Pcsk9 as well as the Srebp-2 hepatic cholesterol biosynthesis pathway. Pcsk9 knockdown in combination with either treatment led to greater reductions in serum non-HDL with a near-uniform reduction of all LDL-c subfractions. In addition to reducing serum cholesterol, the combined rosuvastatin/ezetimibe/Pcsk9 siRNA treatment exhibited a significant reduction in serum APOB protein and triglyceride levels. Taken together, these data provide evidence that PCSK9 inhibitors, in combination with current therapies, have the potential to achieve greater reductions in both serum cholesterol and triglycerides.


Assuntos
Anticolesterolemiantes/uso terapêutico , Azetidinas/uso terapêutico , Fluorbenzenos/uso terapêutico , Pirimidinas/uso terapêutico , Serina Endopeptidases/metabolismo , Sulfonamidas/uso terapêutico , Animais , Apolipoproteínas B/sangue , Colesterol/sangue , LDL-Colesterol/sangue , Ensaio de Imunoadsorção Enzimática , Ezetimiba , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosuvastatina Cálcica , Serina Endopeptidases/genética , Triglicerídeos/sangue
7.
World J Cardiol ; 13(10): 526-532, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34754397

RESUMO

More than twenty years ago, knowledge about the importance of cholesterol absorption and the potential therapeutic effect of its inhibition led to the discovery and clinical application of the first and only cholesterol absorption inhibitor to date - ezetimibe. Since then, ezetimibe has become a well-recognized player in lipid-lowering therapy. Recent findings of IMPROVE-IT and EWTOPIA 75 imply that elderly patients over the age of 75 years in particular benefit from ezetimibe. This review summarizes the evidence, discusses the possible underlying pathophysiological mechanisms and calls for a change in future dyslipidemia guidelines.

8.
Biochim Biophys Acta ; 1791(7): 679-83, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19272334

RESUMO

Niemann-Pick C1 Like 1 (NPC1L1) has been identified and characterized as an essential protein in the intestinal cholesterol absorption process. NPC1L1 localizes to the brush border membrane of absorptive enterocytes in the small intestine. Intestinal expression of NPC1L1 is down regulated by diets containing high levels of cholesterol. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that cholesterol absorption inhibitor ezetimibe specifically binds to an extracellular loop of NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice are resistant to diet-induced hypercholesterolemia, and when crossed with apo E null mice, are completely resistant to the development of atherosclerosis. Intestinal gene expression studies in Npc1l1 null mice indicated that no exogenous cholesterol was entering enterocytes lacking NPC1L1, which resulted in an upregulation of intestinal and hepatic LDL receptor and cholesterol biosynthetic gene expression. Polymorphisms in the human NPC1L1 gene have been found to influence cholesterol absorption and plasma low density lipoprotein levels. Therefore, NPC1L1 is a critical intestinal sterol uptake transporter which influences whole body cholesterol homeostasis.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Sequência de Aminoácidos , Animais , Transporte Biológico , Humanos , Absorção Intestinal , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Dados de Sequência Molecular
9.
J Cell Physiol ; 224(1): 273-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20333646

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) induces degradation of low-density lipoprotein receptor (LDLR) in the liver. It is being pursued as a therapeutic target for LDL-cholesterol reduction. Earlier genome-wide gene expression studies showed that PCSK9 over-expression in HepG2 cells resulted in up-regulation of genes in cholesterol biosynthesis and down-regulation of genes in stress response pathways; however, it was not known whether these changes were directly regulated by PCSK9 or were secondary to PCSK9-induced changes to the intracellular environment. In order to further understand the biological function of PCSK9 we treated HepG2 cells with purified recombinant wild type (WT) and D374Y gain-of-function PCSK9 proteins for 8, 24, and 48 h, and used microarray analysis to identify genome-wide expression changes and pathways. These results were compared to the changes induced by culturing HepG2 cells in cholesterol-free medium, mimicking the intracellular environment of cholesterol starvation. We determined that PCSK9-induced up-regulation of cholesterol biosynthesis genes resulted from intracellular cholesterol starvation. In addition, we identified novel pathways that are presumably regulated by PCSK9 and are independent of its effects on cholesterol uptake. These pathways included "protein ubiquitination," "xenobiotic metabolism," "cell cycle," and "inflammation and stress response." Our results indicate that PCSK9 affects metabolic pathways beyond cholesterol metabolism in HepG2 cells.


Assuntos
Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Serina Endopeptidases/metabolismo , Colesterol/biossíntese , Colesterol/deficiência , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Fatores de Tempo
10.
Atheroscler Suppl ; 9(2): 77-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18585981

RESUMO

Ezetimibe is a selective cholesterol absorption inhibitor, which potently inhibits the uptake and absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides or bile acids. Identification and characterization of Niemann-Pick C1 Like 1 (NPC1L1) has established NPC1L1 as an essential protein in the intestinal cholesterol absorption process. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that ezetimibe specifically binds to NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice were resistant to diet-induced hypercholesterolemia, and when crossed with apoE null mice, were completely resistant to the development of atherosclerosis. In Npc1l1/apoE null mice or apoE null mice treated with ezetimibe plasma cholesterol levels were reduced primarily in the apoB48 containing chylomicron remnant lipoproteins relative to untreated apoE null mice. SR-B1 has been proposed to play a role in intestinal cholesterol uptake, but in Npc1l1/SR-B1 double null mice intestinal cholesterol absorption was not different than Npc1l1 null alone mice. Therefore, NPC1L1 is the critical intestinal sterol transporter which influences whole body cholesterol homeostasis, and is the molecular target of ezetimibe.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Azetidinas/farmacologia , Colesterol na Dieta/farmacocinética , Progressão da Doença , Ezetimiba , Humanos , Absorção Intestinal/efeitos dos fármacos
11.
Arterioscler Thromb Vasc Biol ; 27(4): 841-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17218600

RESUMO

OBJECTIVE: The objective of this study was to determine whether the deficiency of Niemann-Pick C1 Like 1 (Npc1l1) prevents atherosclerosis in apoE null mice. METHODS AND RESULTS: Npc1l1(-/-)/apoE null-/- mice were generated and found to have a significant reduction in cholesterol absorption (-77%) compared with wild-type or apoE-/- mice. Npc1l1/apoE-/- mice were fed a chow or Western diet for 24 weeks, then lipoprotein, hepatic, and biliary cholesterol, and atherosclerosis development was compared with apoE-/-, Npc1l1-/-, wild-type, and ezetimibe-treated apoE-/- mice. Chylomicron remnant/VLDL cholesterol levels were reduced 80% to 90% in both chow and Western diet-fed Npc1l1/apoE-/- mice relative to apoE-/- mice. Male Npc1l1-/- and Npc1l1/apoE-/- mice were completely resistant to diet induced hypercholesterolemia, and both male and female mice were completely resistant to increases in hepatic and biliary cholesterol levels. Atherosclerosis was reduced 99% in aortic lesion surface area, 94% to 97% in innominate artery intimal lesion area, and >90% in aortic root lesion area in both male and female Npc1l1/apoE-/- mice relative to apoE-/- mice. CONCLUSIONS: Lack of Npc1l1, the molecular target of the cholesterol absorption inhibitor ezetimibe, in apoE-/- mice results in a significant reduction in cholesterol absorption and plasma cholesterol levels, and causes a nearly complete protection from the development of atherosclerosis, under both cholesterol-fed and non-cholesterol-fed conditions.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Proteínas de Membrana Transportadoras/deficiência , Absorção , Animais , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/patologia , Bile/metabolismo , Tronco Braquiocefálico/patologia , Colesterol/sangue , Colesterol/farmacocinética , Progressão da Doença , Feminino , Mucosa Intestinal/metabolismo , Lipoproteínas/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Nutr Rev ; 76(10): 725-746, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101294

RESUMO

Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.


Assuntos
Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/terapia , Dieta/métodos , Hipercolesterolemia/terapia , Enteropatias/terapia , Erros Inatos do Metabolismo Lipídico/terapia , Fitosteróis/efeitos adversos , Fitosteróis/farmacologia , Canadá , Doenças Cardiovasculares/sangue , Colesterol/sangue , LDL-Colesterol/sangue , Congressos como Assunto , Humanos , Hipercolesterolemia/sangue , Enteropatias/sangue , Erros Inatos do Metabolismo Lipídico/sangue , Fitosteróis/sangue
13.
J Atheroscler Thromb ; 14(3): 99-108, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17587760

RESUMO

Zetia (ezetimibe) is a selective cholesterol absorption inhibitor, which potently inhibits the absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides or bile acids. Ezetimibe reduces the small intestinal enterocyte uptake and absorption of cholesterol by binding to Niemann-Pick C1 Like 1 (NPC1L1), which keeps cholesterol in the intestinal lumen for excretion. Ezetimibe undergoes glucuronidation to a single metabolite and localizes at the intestinal wall, where it binds with higher affinity for NPC1L1 than ezetimibe to prevent cholesterol absorption. Enterohepatic recirculation of ezetimibe and/or its glucuronide ensures repeated delivery to the intestinal site of action and limited peripheral exposure. Ezetimibe has no effect on the activity of major drug metabolizing enzymes (CYP450), which reduces any potential drug-drug interactions with other medications. Ezetimibe (10 mg/day) was found to inhibit cholesterol absorption by an average of 54% in hypercholesterolemic individuals and by 58% in vegetarians. Ezetimibe alone reduced plasma total and LDL-Cholesterol (18%) levels in patients with primary hypercholesterolemia. When ezetimibe was added to on-going statin treatment, an additional 25% reduction in LDL-C was found in patients with primary hypercholesterolemia and an additional 21% reduction in LDL-C in homozygous familial hypercholesterolemia. Ezetimibe in combination with statins produces additional reductions in plasma cholesterol levels and allows for more patients to achieve their LDL-C goals.


Assuntos
Anticolesterolemiantes/uso terapêutico , Azetidinas/uso terapêutico , LDL-Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Ezetimiba , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Doenças de Niemann-Pick/tratamento farmacológico
14.
Biochem J ; 398(3): 423-30, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16724960

RESUMO

The Gpbar1 [G-protein-coupled BA (bile acid) receptor 1] is a recently identified cell-surface receptor that can bind and is activated by BAs, but its physiological role is unclear. Using targeted deletion of the Gpbar1 gene in mice, we show that the gene plays a critical role in the maintenance of bile lipid homoeostasis. Mice lacking Gpbar1 expression were viable, developed normally and did not show significant difference in the levels of cholesterol, BAs or any other bile constituents. However, they did not form cholesterol gallstones when fed a cholic acid-containing high-fat diet, and liver-specific gene expression indicated that Gpbar1-deficient mice have altered feedback regulation of BA synthesis. These results suggest that Gpbar1 plays a critical role in the formation of gallstones, possibly via a regulatory mechanism involving the cholesterol 7alpha-hydroxylase pathway.


Assuntos
Colesterol/análise , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Deleção de Genes , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácidos e Sais Biliares/biossíntese , Colesterol 7-alfa-Hidroxilase/metabolismo , Gorduras na Dieta/metabolismo , Vesícula Biliar/patologia , Cálculos Biliares/química , Regulação da Expressão Gênica , Fígado/patologia , Camundongos , Camundongos Knockout , RNA Mensageiro
16.
Atherosclerosis ; 267: 78-89, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101839

RESUMO

BACKGROUND AND AIMS: Lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzymatic inflammatory biomarker primarily bound to low-density lipoprotein cholesterol, is associated with an approximate twofold increased risk of cardiovascular disease and stroke. Despite indications that circulating Lp-PLA2 is sensitive to statins, it remains largely unknown whether statin usage exerts local effects on Lp-PLA2 expression at the site of atheromatous plaque. METHODS: Carotid plaques (n = 38) were prospectively collected from symptomatic (n = 18) and asymptomatic (n = 20) patients with (n = 20) or without (n = 18) documented statin history. In all cases, endarterectomy was performed where the primary stenosis was removed in an undisturbed manner. Serial cryosections of the presenting lesion were assessed histologically for macrophages, Lp-PLA2, and cell death (apoptotic index). RESULTS: Symptomatic lesions exhibited less calcification, with greater inflammation characterized by increased expression of CD68+ and CD163+ macrophage subsets, and Lp-PLA2. Symptomatic plaques also exhibited greater necrotic core area and increased apoptosis, as compared with asymptomatic lesions. In contrast, statin treatment did not appear to influence any of these parameters, except for the extent of apoptosis, which was less in statin treated as compared with statin naïve lesions. Overall, Lp-PLA2 expression correlated positively with necrotic core area, CD68+ and CD163+ macrophage area, and cell death. Finally, in vitro assays and dual immunofluorescence staining confirmed CD163-expressing monocytes/macrophages are also a major source of Lp-PLA2. CONCLUSIONS: Statin treatment has no effect on local atherosclerotic lesion Lp-PLA2 activity, therefore, the addition of anti-inflammatory treatments to further decrease macrophage Lp-PLA2 expression in atherosclerotic lesions may reduce lesional inflammation and cell death, and prevent necrotic core expansion and lesion progression.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Estenose das Carótidas/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas/metabolismo , Fosfolipases A2/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de Superfície Celular/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Idoso , Apoptose , Aterosclerose/metabolismo , Artérias Carótidas/metabolismo , Estenose das Carótidas/tratamento farmacológico , Progressão da Doença , Endarterectomia das Carótidas , Feminino , Humanos , Inflamação , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Necrose , Estudos Prospectivos
17.
Biochim Biophys Acta ; 1722(3): 282-92, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15777641

RESUMO

The exact mechanistic pathway of cholesterol absorption in the jejunum of the small intestines is a poorly understood process. Recently, a relatively novel gene, Niemann-Pick C1 Like 1 (NPC1L1), was identified as being critical for intestinal sterol absorption in a pathway which is sensitive to sterol absorption inhibitors such as ezetimibe. NPC1L1 is a multi-transmembrane protein, with a putative sterol sensing domain. Very little else is known about the NPC1L1 protein. In this report, we characterize the native and recombinant rat NPC1L1 protein. We show that NPC1L1 is a 145 kDa membrane protein, enriched in the brush border membrane of the intestinal enterocyte and is highly glycosylated. In addition, sequential detergent extraction of enterocytes result in highly enriched preparations of NPC1L1. An engineered Flag epitope tagged rat NPC1L1 cDNA was expressed as recombinant protein in CHO cells and demonstrated cell surface expression, similar to the native rat protein. These biochemical data indicate that NPC1L1 exists as a predominantly cell surface membrane expressed protein, consistent with its proposed role as the putative intestinal sterol transporter.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Primers do DNA , Proteínas de Membrana Transportadoras/imunologia , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo
19.
Nat Rev Cardiol ; 13(2): 79-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26503410

RESUMO

Plaque rupture, usually of a precursor lesion known as a 'vulnerable plaque' or 'thin-cap fibroatheroma', is the leading cause of thrombosis. Less-frequent aetiologies of coronary thrombosis are erosion, observed with greatest incidence in women aged <50 years, and eruptive calcified nodules, which are occasionally identified in older individuals. Various treatments for patients with coronary artery disease, such as CABG surgery and interventional therapies, have led to accelerated atherosclerosis. These processes occur within months to years, compared with the decades that it generally takes for native disease to develop. Morphological identifiers of accelerated atherosclerosis include macrophage-derived foam cells, intraplaque haemorrhage, and thin fibrous cap. Foam-cell infiltration can be observed within 1 year of a saphenous vein graft implantation, with subsequent necrotic core formation and rupture ensuing after 7 years in over one-third of patients. Neoatherosclerosis occurs early and with greater prevalence in drug-eluting stents than in bare-metal stents and, although rare, complications of late stent thrombosis from rupture are associated with high mortality. Comparison of lesion progression in native atherosclerotic disease, atherosclerosis in saphenous vein grafts, and in-stent neoatherosclerosis provides insight into the pathogenesis of atheroma formation in natural and iatrogenic settings.


Assuntos
Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Reestenose Coronária/patologia , Reestenose Coronária/fisiopatologia , Stents Farmacológicos/efeitos adversos , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Veia Safena/patologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/mortalidade , Reestenose Coronária/etiologia , Reestenose Coronária/mortalidade , Progressão da Doença , Humanos , Incidência , Prevalência , Taxa de Sobrevida , Estados Unidos/epidemiologia
20.
Biochim Biophys Acta ; 1580(1): 77-93, 2002 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11923102

RESUMO

The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats. Pools of cDNAs prepared from rat intestinal cells enriched in enterocytes were introduced into BW5147 cells and screened for SCH354909 binding. Several independent clones were isolated and all found to encode the scavenger receptor class B, type I (SR-BI), a protein suggested by others to play a role in cholesterol absorption. SCH354909 bound to Chinese hamster ovary (CHO) cells expressing SR-BI in specific and saturable fashion and with high affinity (K(d) approximately 18 nM). Overexpression of SR-BI in CHO cells resulted in increased cholesterol uptake that was blocked by micromolar concentrations of ezetimibe. Analysis of rat intestinal sections by in situ hybridization demonstrated that SR-BI expression was restricted to enterocytes. Cholesterol absorption was determined in SR-B1 knockout mice using both an acute, 2-h, assay and a more chronic fecal dual isotope ratio method. The level of intestinal cholesterol uptake and absorption was similar to that seen in wild-type mice. When assayed in the SR-B1 knockout mice, the dose of ezetimibe required to inhibit hepatic cholesterol accumulation induced by a cholesterol-containing 'western' diet was similar to wild-type mice. Thus, the binding of ezetimibe to cells expressing SR-B1 and the functional blockade of SR-B1-mediated cholesterol absorption in vitro suggest that SR-B1 plays a role in intestinal cholesterol metabolism and the inhibitory activity of ezetimibe. In contrast studies with SR-B1 knockout mice suggest that SR-B1 is not essential for intestinal cholesterol absorption or the activity of ezetimibe.


Assuntos
Antígenos CD36/metabolismo , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana , Receptores Imunológicos , Receptores de Lipoproteínas , Animais , Anticolesterolemiantes/farmacologia , Azetidinas/farmacologia , Antígenos CD36/biossíntese , Antígenos CD36/genética , Células CHO , Colesterol/sangue , Clonagem Molecular , Cricetinae , Relação Dose-Resposta a Droga , Ezetimiba , Citometria de Fluxo , Biblioteca Gênica , Hibridização In Situ , Absorção Intestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Depuradores , Receptores Depuradores Classe B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA