Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 112(6): 1270-1281, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355553

RESUMO

While kinases are typically composed of one or two subunits, calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is composed of 8-14 subunits arranged as pairs around a central core. It is not clear if the CaMKII holoenzyme functions as an assembly of independent subunits, as catalytic pairs, or as a single unit. One strategy to address this question is to genetically engineer monomeric and dimeric CaMKII and evaluate how their activity compares to the wild-type (WT) holoenzyme. Here a technique that combines fluorescence correlation spectroscopy and homo-FRET analysis was used to characterize assembly mutants of Venus-tagged CaMKIIα to identify a dimeric CaMKII. Spectroscopy was then used to compare how holoenzyme structure and function changes in response to activation with CaM in the dimeric mutant, WT-holoenzyme, and a monomeric CaMKII oligomerization-domain deletion mutant control. CaM triggered an increase in hydrodynamic volume in both WT and dimeric CaMKII without altering subunit stoichiometry or the net homo-FRET between Venus-tagged catalytic domains. Biochemical analysis revealed that the dimeric mutant also functioned like WT holoenzyme in terms of its kinase activity with an exogenous substrate, and for endogenous T286 autophosphorylation. We conclude that the fundamental functional units of CaMKII holoenzyme are paired catalytic-domains.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Transferência Ressonante de Energia de Fluorescência , Multimerização Proteica , Células HEK293 , Holoenzimas/química , Humanos , Estrutura Quaternária de Proteína
2.
J Virol ; 89(16): 8632-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063422

RESUMO

UNLABELLED: The molecular mechanisms that define the specificity of flavivirus RNA encapsulation are poorly understood. Virions composed of the structural proteins of one flavivirus and the genomic RNA of a heterologous strain can be assembled and have been developed as live attenuated vaccine candidates for several flaviviruses. In this study, we discovered that not all combinations of flavivirus components are possible. While a West Nile virus (WNV) subgenomic RNA could readily be packaged by structural proteins of the DENV2 strain 16681, production of infectious virions with DENV2 strain New Guinea C (NGC) structural proteins was not possible, despite the very high amino acid identity between these viruses. Mutagenesis studies identified a single residue (position 101) of the DENV capsid (C) protein as the determinant for heterologous virus production. C101 is located at the P1' position of the NS2B/3 protease cleavage site at the carboxy terminus of the C protein. WNV NS2B/3 cleavage of the DENV structural polyprotein was possible when a threonine (Thr101 in strain 16681) but not a serine (Ser101 in strain NGC) occupied the P1' position, a finding not predicted by in vitro protease specificity studies. Critically, both serine and threonine were tolerated at the P1' position of WNV capsid. More extensive mutagenesis revealed the importance of flanking residues within the polyprotein in defining the cleavage specificity of the WNV protease. A more detailed understanding of the context dependence of viral protease specificity may aid the development of new protease inhibitors and provide insight into associated patterns of drug resistance. IMPORTANCE: West Nile virus (WNV) and dengue virus (DENV) are mosquito-borne flaviviruses that cause considerable morbidity and mortality in humans. No specific antiflavivirus therapeutics are available for treatment of infection. Proteolytic processing of the flavivirus polyprotein is an essential step in the replication cycle and is an attractive target for antiviral development. The design of protease inhibitors has been informed by insights into the molecular details of the interactions of proteases and their substrates. In this article, studies of the processing of WNV and DENV capsid proteins by the WNV protease identified an unexpected contribution of the sequence surrounding critical residues within the cleavage site on protease specificity. This demonstration of context-dependent protease cleavage has implications for the design of chimeric flaviviruses, new therapeutics, and the interpretation of flavivirus protease substrate specificity studies.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Vírus do Nilo Ocidental/enzimologia , Análise de Variância , Mutagênese , Plasmídeos/genética , Especificidade da Espécie , Eletricidade Estática , Especificidade por Substrato
3.
Biophys J ; 108(9): 2158-70, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954874

RESUMO

Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Domínio Catalítico , Sequência de Aminoácidos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células HEK293 , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Treonina/química , Treonina/metabolismo
4.
J Cardiovasc Dev Dis ; 9(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877582

RESUMO

Single ventricle (SV) heart disease comprises a spectrum of complex congenital heart defects (CHDs), including hypoplastic left heart syndrome (HLHS), one of the most common causes of death amongst infants with CHD. Despite its incompletely defined etiology and a dearth of curative solutions, SV is a solvable problem that can be addressed by unifying a nascent field that is ripe for investment, in part due to its high economic impact and growth potential. Here, we explore the landscape of SV and identify areas of opportunity that will yield an outsized impact through strategic investment that focuses on synchronization across disciplines, community involvement, and infrastructure development, and argue that nonprofits are the appropriate catalyst to spark transformative innovation and impact in the form of functional cures.

5.
Microb Cell ; 4(11): 387-389, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29167802

RESUMO

Viruses manipulate cellular processes to create an environment favorable to replication. For most viruses, this includes subverting the expression of interferon (IFN), a signaling molecule that can stimulate production of a vast array of antiviral gene products. Rotavirus, a segmented double-stranded RNA virus that causes acute gastroenteritis in infants and young children, inhibits IFN expression through its nonstructural protein NSP1. This viral protein stifles IFN expression by inducing the degradation of host factors that are necessary for upregulating the activity of IFN genes. In the case of nearly all human and porcine rotavirus strains, NSP1 induces the ubiquitination-dependent proteasomal degradation of ß-transducin repeat containing protein (ß-TrCP), a host factor that plays an essential role in activating the IFN-transcription factor, NF-κB. Key to the process is the presence of a decoy sequence (degron) at the C-terminus of NSP1 that causes ß-TrCP to mistakenly bind NSP1 instead of its natural target, inhibitor-of-κB (IκB). In a recent report published by Davis et al [2017; mBio 8(4): e01213-17], we describe molecular requirements that govern NSP1 recognition of ß-TrCP, including an essential degron phosphorylation event, and the step-wise incorporation of NSP1 into hijacked cullin-RING E3 ligases (CRLs) that ubiquitinate and tag ß-TrCP for degradation. Notably, although ß-TrCP is chiefly recognized for its role as a master regulator of NF-κB signaling and IFN expression, ß-TrCP also controls the stability of checkpoint proteins implicated in numerous other cellular pathways with antiviral activities, including autophagy and apoptosis. Thus, the impact of NSP1 on creating an intracellular environment favorable to virus replication may extend well beyond the IFN signaling pathway.

6.
mBio ; 8(4)2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851847

RESUMO

The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the ß-transducin repeat-containing protein (ß-TrCP), a regulator of NF-κB activation. ß-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits ß-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of ß-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of ß-TrCP and ending with incorporation of the NSP1-ß-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif.IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is ß-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the ß-TrCP recognition motif in NSP1. This modification triggers recruitment of the ß-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1-ß-TrCP complex to a cullin scaffold.


Assuntos
Caseína Quinase II/metabolismo , Proteínas Culina/metabolismo , Rotavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Caseína Quinase II/genética , Proteínas Culina/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas I-kappa B/metabolismo , Imunidade Inata , Mutagênese , NF-kappa B/metabolismo , Fosforilação , Proteólise , RNA Interferente Pequeno , Rotavirus/genética , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Transdução de Sinais , Suínos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA