Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(13): 8753-8759, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110808

RESUMO

Identification of nanoplastics in complex environmental matrices remains a challenge. Despite the increase in nanoplastics studies, there is a lack of studies dedicated to nanoplastics detection, partially explained by their carbon-based structure, their wide variety of composition, and their low environmental concentrations compared to the natural organic matter. Here, pyrolysis coupled to a GCMS instrumental setup provided a relevant analytical response for polypropylene and polystyrene nanoplastic suspensions. Specific pyrolysis markers and their indicative fragment ions were selected and validated. Possible interferences with environmental matrices were explored by spiking nanoplastics in various organic matter suspensions (i.e., algae, soil natural organic matter, and soil humic acid) and analyzing an environmental suspension of nanoplastics. While a rapid polypropylene nanoplastics identification was validated, polystyrene nanoplastics require preliminary treatment. The strategies presented herein open new possibilities for the detection/identification of nanoplastics in environmental matrices such as soil, dust, and biota.


Assuntos
Microplásticos , Poliestirenos , Substâncias Húmicas , Polipropilenos , Solo
2.
J Synchrotron Radiat ; 27(Pt 1): 230-237, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868757

RESUMO

A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.

3.
Anal Chem ; 87(20): 10346-53, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26383030

RESUMO

The foundation of nanoscience is that the properties of materials change as a function of their physical dimensions, and nanotechnology exploits this premise by applying selected property modifications for a specific benefit. However, to investigate the fate and effect of the engineered nanoparticles on toxic metal (TM) mobility, the analytical limitations in a natural environment remain a critical problem to overcome. Recently, a new generation of size exclusion chromatography (SEC) columns developed with spherical silica is available for pore sizes between 5 and 400 nm, allowing the analysis of nanoparticles. In this study, these columns were applied to the analysis of metal-based nanoparticles in environmental and artificial samples. The new method allows quantitative measurements of the interactions among nanoparticles, organic matter, and metals. Moreover, because of the new nanoscale SEC, our method allows the study of these interactions for different size ranges of nanoparticles and weights of organic molecules with a precision of 1.2 × 10(-2) kDa. The method was successfully applied to the study of nanomagnetite spiked in complex matrixes, such as sewage sludge, groundwater, tap water, and different artificial samples containing Leonardite humic acid and different toxic metals (i.e., As, Pb, Th). Finally, our results showed that different types of interactions, such as adsorption, stabilization, and/or destabilization of nanomagnetite could be observed using this new method.

4.
Chemosphere ; 364: 143164, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181466

RESUMO

Rare earth element (REE) mobility in the environment is expected to be controlled by colloids. Recent research has detailed the structure of iron-organic colloids (Fe-OM colloids), which include both large colloids and smaller nano-colloids. To assess how these nano-colloids affect REE mobility, their interactions with REE and calcium (Ca) were investigated at pH 4 and 6. Using Asymmetric Flow Field Flow Fractionation (A4F) combined with UV and Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (QQQ-ICP-MS), Fe-OM nano-colloids were separated from bulk Fe-OM colloids and their REE and Ca content were analyzed. Without REE and Ca, nano-colloids had an average diameter of approximately 25 nm. Their structure is pH-dependent, with aggregation increasing as pH decreases. At high REE loadings (REE/Fe ≥ 0.05), REE induced a size increase of nano-colloids, regardless of pH. Heavy REE (HREE), with their high affinity for organic matter, formed strong complexes with Fe-OM colloids, resulting in large aggregates. In contrast, light REE (LREE), which bind less strongly to organic molecules, were associated with the smallest nano-colloids. Low REE loading did not cause noticeable fractionation. Calcium further enhanced the aggregation process at both pH levels by neutralizing the charges on nano-colloids. These findings indicate that REE can act as aggregating agent controlling their own mobility, and regulating colloid transfer.

5.
Sci Total Environ ; 927: 172252, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599414

RESUMO

Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.


Assuntos
Monitoramento Ambiental , Invertebrados , Plásticos , Poluentes do Solo , Solo , Plásticos/análise , Animais , Poluentes do Solo/análise , Solo/química , Biodiversidade , Ecossistema
6.
NanoImpact ; 35: 100526, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39116935

RESUMO

Most studies on nanoplastics (NPs) focus on aquatic environments, overlooking their combined bioaccumulation with pollutants in terrestrial ecosystems. This study addresses a part of this gap by investigating how polystyrene nanoplastics (PS-NPs) affect the bioaccumulation and translocation of lead (Pb) in Hordeum vulgare L. plants. Using the RHIZOtest device for precise soil contamination control, we quantified PS-NPs (50 nm) in plant shoots via pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) after plant KOH digestion. Our findings revealed that PS-NPs reduce Pb bioaccumulation and make adsorbed Pb onto PS-NPs less bioavailable to plants. For the highest Pb concentration, the Pb uptake index (PUI) followed the trend: Free Pb > NPs + Pb > Pb primary adsorbed by NPs, showing reduced Pb translocation to shoots in the presence of PS-NPs. Moreover, the presence of Pb decreased the bioavailability of PS-NPs probably in response to PS-NPs aggregation or modified charge. The PS-NPs concentrations in shoots range from 275.2 to 400 µg g-1, representing 3.9 to 5.75% of the total PS-NPs. This study highlights the intricate interactions between nanoplastics and metals in soil-plant systems and emphasizes the need for further research on their combined effects and potential risks to food safety.


Assuntos
Hordeum , Chumbo , Poliestirenos , Poluentes do Solo , Hordeum/metabolismo , Hordeum/efeitos dos fármacos , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Nanopartículas , Brotos de Planta/metabolismo , Brotos de Planta/química , Bioacumulação , Plásticos/metabolismo , Microplásticos
7.
J Hazard Mater ; 476: 135153, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024756

RESUMO

Metal contaminants were found in a soil amended with a compost produced from household waste that included plastic debris. A strong correlation between the microplastics (MPs) distribution and the metal concentrations in the soil profile. Metals in the highest concentrations corresponded to the most significant plastic additives. As the total amount of plastic debris and the loss of metals and plastic particles were unknown, it was not possible to conclude that plastic debris is responsible for all of the metal contamination. Amount of calcium (Ca) in MPs (24.5 g kg-1 of MPs) are high in response to it use as filler in plastic formulation. As strontium (Sr) is an analogous of Ca, the potential of 87Sr/86Sr ratios to quantify MPs and nanoplastics (NPs) was tested. Elemental concentrations (Ca, Cd, Cr Pb, Ni and Sr) coupled with Sr isotopic ratios were compared in both amended soil and a reference soil without amendment. The 87Sr/86Sr ratios of the amended soil were less radiogenic than for the reference soil (0.724296 ± 0.000010 against 0.726610 ± 0.00009 for the 0-5 cm soil layer, respectively). The Sr isotopic ratio of MPs was also significantly less radiogenic (0.711527 ± 0.000010 for the 0-5 cm soil layer) than for soils. The MPs< 2 mm occurred in the ploughed soil depth with concentration varying from 1.19 to 0.09 mg kg-1. The NPs concentration stayed quite constant from 0 to 55 cm at around 0.25 µg kg-1. The presence of NPs until 55 cm soil depth was attested by the detection of polypropylene NPs by Py-GCMS in the soil solution < 0.8 µm. These results highlighted, for the first time, the NPs mobility throughout the soil depth and their ability to reach hydrosystems. It also demonstrated that Sr could be a potential tracer of the MPs< 2 mm and NPs amount occurring in soils.

8.
NanoImpact ; 31: 100473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392957

RESUMO

Soil is now becoming a reservoir of plastics in response to global production, use/disposal patterns and low recovery rates. Their degradation is caused by numerous processes, and this degradation leads to the formation and release of plastic nanoparticles, i.e., nanoplastics. The occurrence of nanoplastics in the soil is expected to both directly and indirectly impact its properties and functioning. Nanoplastics may directly impact the physiology and development of living organisms, especially plants, e.g., by modifying their production yield. Nanoplastics can also indirectly modify the physicochemical properties of the soil and, as a result, favour the release of related contaminants (organic or inorganic) and have an impact on soil biota, and therefore have a negative effect on the functioning of rhizospheres. However all these results have to be taken carefully since performed with polymer nano-bead not representative of the nanoplastics observed in the environment. This review highlight thus the current knowledge on the interactions between plants, rhizosphere and nanoplastics, their consequences on plant physiology and development in order to identify gaps and propose scientific recommendations.


Assuntos
Microplásticos , Plásticos , Plásticos/toxicidade , Solo
9.
Environ Sci Nano ; 11: 373-388, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38779611

RESUMO

Metals and metalloids are widely used in producing plastic materials as fillers and pigments, which can be used to track the environmental fate of real-life nanoplastics in environmental and biological systems. Therefore, this study investigated the metal and metalloids concentrations and fingerprint in real-life model nanoplastics generated from new plastic products (NPP) and from environmentally aged ocean plastic fragments (NPO) using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-TOF-MS) and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX). The new plastic products include polypropylene straws (PPS), polyethylene terephthalate bottles (PETEB), white low-density polyethylene bags (LDPEB), and polystyrene foam shipping material (PSF). All real-life model nanoplastics contained metal and metalloids, including Si, Al, Sr, Ti, Fe, Ba, Cu, Pb, Zn, Cd, and Cr, and were depleted in rare earth elements. Nanoplastics generated from the white LDPEB were rich in Ti-bearing particles, whereas those generated from PSF were rich in Cr, Ti, and Pb. The Ti/Fe in the LDPEB nanoplastics and the Cr/Fe in the PSF nanoplastics were higher than the corresponding ratios in natural soil nanoparticles (NNPs). The Si/Al ratio in the PSF nanoplastics was higher than in the NNPs, possibly due to silica-based fillers. The elemental ratio of Si/Al, Fe/Cr, and Fe/Ni in the nanoplastics derived from ocean plastic fragments was intermediate between the nanoplastics derived from real-life plastic products and NNPs, indicating a combined contribution from pigments and fillers used in plastics and from natural sources. This study provides a method to track real-life nanoplastics in controlled laboratory studies based on nanoplastic elemental fingerprints. It expands the realm of nanoplastics that can be followed based on their metallic signatures to all kinds of nanoplastics. Additionally, this study illustrates the importance of nanoplastics as a source of metals and metal-containing nanoparticles in the environment.

10.
Environ Sci Process Impacts ; 23(4): 553-558, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33690777

RESUMO

Microplastics from the North Atlantic Gyre deposited on Guadeloupe beaches were sampled and characterized. A new method is developed to identify which elements were present as additives in these microplastics. The method used both acidic leaching and acidic digestion. Several elements (Al, Zn, Ba, Cu, Pb, Cd, Mn, Cr) were identified as pigments. Furthermore, some elements used as additives to plastics (especially the non-essential elements) seem to contribute to most of the acidic leaching, suggesting that these additives can leach and adsorb onto the surface microplastics, becoming bioavailable. Based on the acidic leaching element content, only Cd should represent a danger for fish when ingested. However, further studies are needed to determine the potential synergetic effect on health caused by the ingestion of several elements and microplastics.


Assuntos
Microplásticos , Plásticos , Animais , Monitoramento Ambiental , Metais
11.
J Hazard Mater ; 404(Pt A): 124127, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049637

RESUMO

Environmental iron-organic matter (Fe-OM) aggregates play a major role in the dynamic of pollutants. Nowadays, there is a lack of information about the control exerted by their structural organization on their reactivity towards metal(loid)s and in particular, the impact of major ions, such as calcium. The sorption capacity of mimetic environmental Fe-OM-Ca aggregates was investigated relative to the Fe/organic carbon (OC) and Ca/Fe ratios using As as a probe. It was shown that Fe speciation is the key factor controlling the reactivity of Fe-OM-Ca aggregates regarding the high affinity of Fe(III)-oligomers towards As and the high sorption capacity of ferrihydrite-like nanoparticles. Moreover, when it occurs at high concentration, Ca competes with Fe for OM binding leading to an increase in the amount of ferrihydrite-like nanoparticles and binding site availability. As a consequence, Ca not only impacts the ionic strength but it also has a dramatic impact on the structural organization of Fe-OM aggregates at several scales of organization, resulting in an increase of their sorption capacity. In the presence of high amounts of Ca, Fe-OM-Ca aggregates could immobilize pollutants in the soil porous media as they form a micrometric network exhibiting a strong sorption capacity.

12.
Chemosphere ; 262: 127784, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32777612

RESUMO

While several studies have investigated the potential impact of nanoplastics, proof of their occurrence in our global environment has not yet been demonstrated. In the present work, by developing an innovative analytical strategy, the presence of nanoplastics in soil was identified for the first time. Our results demonstrate the presence of nanoplastics with a size ranging from 20 to 150 nm and covering three of the most common plastic families: polyethylene, polystyrene and polyvinyl chloride. Given the amount of organic matter in the soil matrix, the discrimination and identification of large nanoplastic aggregates are challenging. However, we provided an innovative methodology to circumvent the organic matter impact on nanoplastic detection by coupling size fractionation to molecular analysis of plastics. While photodegradation has been considered the principal formation pathway of nanoplastics in the environment, this study provides evidence, for the first time, that plastic degradation and nanoplastic production can, however, occur in the soil matrix. Moreover, by providing an innovative and simple extraction/analysis method, this study paves the way to further studies, notably regarding nanoplastic environmental fate and impacts.


Assuntos
Monitoramento Ambiental/métodos , Microplásticos/análise , Nanopartículas/análise , Poluentes do Solo/análise , Solo/química , França , Tamanho da Partícula , Polietileno/análise , Poliestirenos/análise , Cloreto de Polivinila/análise
13.
Sci Rep ; 11(1): 1933, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479360

RESUMO

Although redox reactions are recognized to fractionate iron (Fe) isotopes, the dominant mechanisms controlling the Fe isotope fractionation and notably the role of organic matter (OM) are still debated. Here, we demonstrate how binding to organic ligands governs Fe isotope fractionation beyond that arising from redox reactions. The reductive biodissolution of soil Fe(III) enriched the solution in light Fe isotopes, whereas, with the extended reduction, the preferential binding of heavy Fe isotopes to large biological organic ligands enriched the solution in heavy Fe isotopes. Under oxic conditions, the aggregation/sedimentation of Fe(III) nano-oxides with OM resulted in an initial enrichment of the solution in light Fe isotopes. However, heavy Fe isotopes progressively dominate the solution composition in response to their binding with large biologically-derived organic ligands. Confronted with field data, these results demonstrate that Fe isotope systematics in wetlands are controlled by the OM flux, masking Fe isotope fractionation arising from redox reactions. This work sheds light on an overseen aspect of Fe isotopic fractionation and calls for a reevaluation of the parameters controlling the Fe isotopes fractionation to clarify the interpretation of the Fe isotopic signature.

14.
Environ Pollut ; 257: 113626, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31796322

RESUMO

The oxidation of magnetite into maghemite and its coating by natural organic constituents are common changes that affect the reactivity of iron oxide nanoparticles (IONP) in aqueous environments. Certain ubiquitous compounds such as humic acids (HA) and phosphatidylcholine (PC), displaying a high affinity for both copper (Cu) and IONP, could play a critical role in the interactions involved between both compounds. The adsorption of Cu onto four different IONP was studied: magnetite nanoparticles (magnNP), maghemite NP (maghNP), HA- and PC-coated magnetite NP (HA-magnNP and PC-magnNP, respectively). According to the results, the percentage of adsorbed Cu increases with increasing pH, irrespective of the IONP. Thus, protonation/deprotonation reactions are likely involved within Cu adsorption mechanism. Contrary to the other studied IONP, HA-magnNP favor Cu adsorption at most of the pH tested including acidic pH (pH = 3), suggesting that part of the active surface sites for Cu2+ were not grabbed by protons. The Freundlich adsorption isotherm of HA-magnNP provides the highest sorption constant KF (bonding energy) and n value which supports a heterogeneous sorption process. The heterogeneous adsorption between HA-magnNP and Cu2+ can be explained by both the diversity of the binding sites HA procured and the formation of multidendate complexes between Cu2+ and some of the HA functional groups. Such favorable adsorption process was neither observed on PC-coated-magnNP nor on maghNP, whose behaviors were comparable to that of magnNP. On another hand, HA and PC coatings considerably reduced iron (Fe) dissolution from magnNP as compared with magnNP. It was suggested that HA and PC coatings either provided efficient shield against Fe leaching or fostered dissolved Fe re-adsorption onto the functional groups at the coated magnNP surfaces. Thus, this study can help to better understand the complex interfacial reactions between cations-organic matter-colloidal surfaces which are relevant in environmental and agricultural contexts. This work showed that magnetite NP properties can be affected by surface modifications, which drive NP chemical stability and Cu adsorption, thereby affecting the global water chemistry.


Assuntos
Cobre , Compostos Férricos , Nanopartículas Metálicas , Água , Adsorção , Cobre/química , Poluentes Ambientais/química , Compostos Férricos/química , Substâncias Húmicas , Nanopartículas Metálicas/química , Óxidos/química , Água/química
15.
Environ Pollut ; 245: 371-379, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448507

RESUMO

Plastic pollution in the marine environment poses threats to wildlife and habitats through varied mechanisms, among which are the transport and transfer to the food web of hazardous substances. Still, very little is known about the metal content of plastic debris and about sorption/desorption processes, especially with respect to weathering. In this study, plastic debris collected from the North Atlantic subtropical gyre was analyzed for trace metals; as a comparison, new packaging materials were also analyzed. Both the new items and plastic debris showed very scattered concentrations. The new items contained significant amounts of trace metals introduced as additives, but globally, metal concentrations were higher in the plastic debris. The results provide evidence that enhanced metal concentrations increase with the plastic state of oxidation for some elements, such as As, Ti, Ni, and Cd. Transmission electron microscopy showed the presence of mineral particles on the surface of the plastic debris. This work demonstrates that marine plastic debris carries complex mixtures of heavy metals. Such materials not only behave as a source of metals resulting from intrinsic plastic additives but also are able to concentrate metals from ocean water as mineral nanoparticles or adsorbed species.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Plásticos/química , Oligoelementos/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Ecossistema , Expedições , Clima Tropical , Tempo (Meteorologia)
16.
Environ Pollut ; 249: 940-948, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30965546

RESUMO

The nanoscale size of plastic debris makes them potential efficient vectors of many pollutants and more especially of metals. In order to evaluate this ability, nanoplastics were produced from microplastics collected on a beach exposed to the North Atlantic Gyre. The nanoplastics were characterized using multi-dimensional methods: asymmetrical flow field flow fractionation and dynamic light scattering coupled to several detectors. Lead (II) adsorption kinetics, isotherm and pH-edge were then carried out. The sorption reached a steady state after around 200 min. The maximum sorption capacity varied between 97% and 78.5% for both tested Pb concentrations. Lead (II) adsorption kinetics is controlled by chemical reactions with the nanoplastics surface and to a lesser extent by intraparticle diffusion. Adsorption isotherm modeling using Freundlich model demonstrated that NPG are strong adsorbents equivalent to hydrous ferric oxides such as ferrihydrite (log Kadsfreundlich=8.36 against 11.76 for NPG and ferrihydrite, respectively). The adsorption is dependent upon pH, in response to the Pb(II) adsorption by the oxygenated binding sites developed on account of the surface UV oxidation under environmental conditions. They could be able to compete with Fe or humic colloids for Pb binding regards to their amount and specific areas. Nanoplastics could therefore be efficient vectors of Pb and probably of many other metals as well in the environment.


Assuntos
Poluentes Ambientais/análise , Chumbo/análise , Nanopartículas/química , Plásticos/química , Poluentes Químicos da Água/análise , Adsorção , Sítios de Ligação , Compostos Férricos/química , Fracionamento por Campo e Fluxo , França , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Propriedades de Superfície
17.
Sci Total Environ ; 631-632: 580-588, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533794

RESUMO

The evolution of rare earth element (REE) speciation between reducing and oxidizing conditions in a riparian wetland soil was studied relative to the size fractionation of the solution. In all size fractions obtained from the reduced and oxidized soil solutions, the following analyses were carried out: organic matter (OM) characterization, transmission electron microscopy (TEM) observations as well as major and trace element analyses. Significant REE redistribution and speciation evolution between the various size fractions were observed. Under reducing conditions, the REEs were bound to colloidal and dissolved OM (<2µm size fractions). By contrast, under oxidizing conditions, they were distributed in particulate (>2µm size fraction), colloidal (<2µm size fraction), organic and Fe-enriched fractions. In the particulate size fraction, the REEs were bound to humic and bacterial OM embedding Fe nano-oxides. The resulting REE pattern showed a strong enrichment in heavy REEs (HREEs) in response to REE binding to specific bacterial OM functional groups. In the largest colloidal size fraction (0.2µm-30kDa), the REEs were bound to humic substances (HS). The lowest colloidal size fraction (<30kDa) is poorly concentrated in the REEs and the REE pattern showed an increase in the middle REEs (MREEs) and heavy REEs (HREEs) corresponding to a low REE loading on HS. A comparison of the REE patterns in the present experimental and field measurements demonstrated that, in riparian wetlands, under a high-water level, reducing conditions are insufficient to allow for the dissolution of the entire Fe nano-oxide pool formed during the oxidative period. Therefore, even under reducing conditions, Fe(III) seems to remain a potential scavenger of REEs.

18.
J Colloid Interface Sci ; 314(2): 490-501, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17692327

RESUMO

Aerobic and anaerobic incubation experiments on a wetland soil samples were used to assess the respective roles of organic matter (OM) release, Fe-oxyhydroxides reduction and redox/speciation changes on trace metal mobility during soil reduction. Significant amounts of Cu, Cr, Co, Ni, Pb, U, Th and Rare Earth Elements (REE) were released during anaerobic incubation, and were accompanied by strong Fe(II) and dissolved organic matter (DOM) release. Aerobic incubation at pH 7 also resulted in significant trace metal and DOM release, suggesting that Fe-oxyhydroxide reduction is not the sole mechanism controlling trace metal mobility during soil reduction. Using these results and redox/speciation modeling, four types of trace metal behavior were identified: (i) metals bound to organic matter (OM) and released by DOM release (REE); (ii) metals bound to both OM and Fe-oxyhydroxides, and released by the combined effect of DOM release and Fe(III) reduction (Pb and Ni); (iii) metals bound solely to soil Fe-oxyhydroxides and released by its reductive dissolution (Co); and (iv) metals for which release mechanisms are unclear because their behavior upon reduction is affected by changes in redox state and/or solution speciation (Cu, Cr, U and Th). Even though the process of soil Fe-oxyhydroxide reduction is important in controlling metal mobility in wetland soils, the present study showed that the dominant mechanism for this process is OM release. Thus, OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils. Due to the fact that the process of OM release is mainly controlled by pH variations, the pH is a more crucial parameter than Eh for metal mobility in wetland soils.


Assuntos
Hidróxidos/química , Ferro/química , Metais/análise , Oligoelementos/análise , Adsorção , Química Orgânica/métodos , Físico-Química/métodos , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Movimento , Oxirredução , Solo , Poluentes do Solo/química , Áreas Alagadas
19.
J Colloid Interface Sci ; 305(1): 25-31, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17052726

RESUMO

The competitive binding of rare earth elements (REE) to humic acid (HA) and carbonates was studied experimentally at various pH and alkalinity values by combining ultrafiltration and inductively coupled plasma mass spectrometry techniques. The results show that the REE species occur as binary humate or carbonate complexes but not as ternary REE-carbonate-humate as previously proposed. The results also reveal the strong pH and alkalinity dependence of the competition as well as the existence of a systematic fractionation across the REE series. Specifically, carbonate complexation is at a maximum at pH 10 and increase with increasing alkalinity and with the atomic number of the REE (LuCO(3)>>LaCO(3)). Modeling of the data using Model VI and recently published stability constants for complexation of REE by humic acid well reproduced the experimental data, confirming the ability of Model VI to accurately determine REE speciation in natural waters. This modeling also confirms the reliability of recently published stability constants. This work shed more light not only on the competition between carbonates and HA for REE complexation but also on the reliability of WHAM 6 and Model VI for calculating the speciation of REE with organic matter in alkaline organic-rich water.

20.
J Colloid Interface Sci ; 470: 153-161, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26939079

RESUMO

Up until now, only a small number of studies have been dedicated to the binding processes of As(III) with organic matter (OM) via ionic Fe(III) bridges; none was interested in Fe (II). Complexation isotherms were carried out with As(III), Fe(II) or Fe(III) and Leonardite humic acid (HA). Although PHREEQC/Model VI, implemented with OM thiol groups, reproduced the experimental datasets with Fe(III), the poor fit between the experimental and modeled Fe(II) data suggested another binding mechanism for As(III) to OM. PHREEQC/Model VI was modified to take various possible As(III)-Fe(II)-OM ternary complex conformations into account. The complexation of As(III) as a mononuclear bidentate complex to a bidentate Fe(II)-HA complex was evidenced. However, the model needed to be improved since the distribution of the bidentate sites appeared to be unrealistic with regards to the published XAS data. In the presence of Fe(III), As(III) was bound to thiol groups which are more competitive with regards to the low density of formed Fe(III)-HA complexes. Based on the new data and previously published results, we propose a general scheme describing the various As(III)-Fe-MO complexes that are able to form in Fe and OM-rich waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA