Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39209617

RESUMO

OBJECTIVE: The current evidence regarding how different predictor domains contributes to predicting incident dementia remains unclear. This study aims to assess the incremental value of five predictor domains when added to a simple dementia risk prediction model (DRPM) for predicting incident dementia in older adults. DESIGN: Population-based, prospective cohort study. SETTING: UK Biobank study. PARTICIPANTS: Individuals aged 60 or older without dementia. MEASUREMENTS: Fifty-five dementia-related predictors were gathered and categorized into clinical and medical history, questionnaire, cognition, polygenetic risk, and neuroimaging domains. Incident dementia (all-cause) and the subtypes, Alzheimer's disease (AD) and vascular dementia (VaD), were determined through hospital and death registries. Ensemble machine learning (ML) DRPMs were employed for prediction. The incremental values of risk predictors were assessed using the percent change in Area Under the Curve (∆AUC%) and the net reclassification index (NRI). RESULTS: The simple DRPM which included age, body mass index, sex, education, diabetes, hyperlipidaemia, hypertension, depression, smoking, and alcohol consumption yielded an AUC of 0.711 (± 0.008 SD). The five predictor domains exhibited varying levels of incremental value over the basic model when predicting all-cause dementia and the two subtypes. Neuroimaging markers provided the highest incremental value in predicting all-cause dementia (∆AUC% +9.6%) and AD (∆AUC% +16.5%) while clinical and medical history data performed the best at predicting VaD (∆AUC% +12.2%). Combining clinical and medical history, and questionnaire data synergistically enhanced ML DRPM performance. CONCLUSION: Combining predictors from different domains generally results in better predictive performance. Selecting predictors involves trade-offs, and while neuroimaging markers can significantly enhance predictive accuracy, they may pose challenges in terms of cost or accessibility.

2.
Sensors (Basel) ; 19(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108970

RESUMO

Patients with paralysis, spinal cord injury, or amputated limbs could benefit from using brain-machine interface technology for communication and neurorehabilitation. In this study, a 32-channel three-dimensional (3D) multielectrode probe array was developed for the neural interface system of a brain-machine interface to monitor neural activity. A novel microassembly technique involving lead transfer was used to prevent misalignment in the bonding plane during the orthogonal assembly of the 3D multielectrode probe array. Standard microassembly and biopackaging processes were utilized to implement the proposed lead transfer technique. The maximum profile of the integrated 3D neural device was set to 0.50 mm above the pia mater to reduce trauma to brain cells. Benchtop tests characterized the electrical impedance of the neural device. A characterization test revealed that the impedance of the 3D multielectrode probe array was on average approximately 0.55 MΩ at a frequency of 1 KHz. Moreover, in vitro cytotoxicity tests verified the biocompatibility of the device. Subsequently, 3D multielectrode probe arrays were implanted in rats and exhibited the capability to record local field potentials and spike signals.


Assuntos
Técnicas Biossensoriais , Encéfalo/fisiopatologia , Sistemas Microeletromecânicos/métodos , Neurônios/patologia , Potenciais de Ação/fisiologia , Animais , Interfaces Cérebro-Computador , Impedância Elétrica , Eletrodos Implantados , Eletroencefalografia , Humanos , Microeletrodos , Neurônios/fisiologia , Ratos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação
3.
Pharmacol Rev ; 67(4): 872-1004, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26403687

RESUMO

Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Alcoolismo/fisiopatologia , Anfetaminas/farmacologia , Animais , Comportamento Aditivo/fisiopatologia , Benzodiazepinas/farmacologia , Canabinoides/farmacologia , Cocaína/farmacologia , Depressão/fisiopatologia , Relação Dose-Resposta a Droga , Expressão Gênica , Alucinógenos/farmacologia , Humanos , Drogas Ilícitas , Entorpecentes/farmacologia , Fatores de Crescimento Neural/metabolismo , Neuroimagem , Nicotina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análogos & derivados , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
4.
Neurobiol Learn Mem ; 138: 215-225, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27400867

RESUMO

Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus. The evidence suggests the hypothesis that behavioural experiences inducing tyrosine hydroxylase expression in the locus coeruleus may be sufficient to prime this form of metaplasticity. We propose exploring this phenomenon of priming and challenge physiologically, to determine whether behavioural experiences are sufficient to prime the locus coeruleus, enabling subsequent pharmacological or behavioural challenge conditions that increase locus coeruleus firing to release sufficient noradrenaline to induce long-lasting potentiation in the dentate gyrus. Such an approach may contribute to unravelling mechanisms underlying this form of metaplasticity and its importance in stress-related mnemonic processes.


Assuntos
Neurônios Adrenérgicos/fisiologia , Giro Denteado/fisiologia , Locus Cerúleo/fisiologia , Plasticidade Neuronal/fisiologia , Via Perfurante/fisiologia , Animais , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Neurobiol Learn Mem ; 137: 163-170, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27916533

RESUMO

Noradrenaline (NA), released by the locus coeruleus (LC), plays a key role in mediating the effects of stress on memory functions. The LC provides diffuse projections to many forebrain nuclei including the hippocampus, the prefrontal cortex (PFC), and the basolateral amygdala (BLA). These three structures are intricately interlinked. The hippocampal-prefrontal (H-PFC) pathway is involved in various cognitive functions. The first aim of this study was to examine the role of BLA in H-PFC plasticity by infusion of drugs to activate and inactivate the BLA and studying the effects on H-PFC long-term potentiation (LTP) in the rat in vivo. Activation of the BLA with glutamate impaired, while inactivation with muscimol augmented, H-PFC LTP. This study also aimed to demonstrate how directly applying noradrenaline and other noradrenergic agents in the BLA can affect H-PFC LTP. Noradrenaline at 1µg/0.2µl enhanced H-PFC LTP. Stimulating alpha-2-adrenoceptors in the BLA with clonidine enhanced LTP while blocking alpha-2 adrenoceptors with idazoxan impaired it. Propranolol, a non-selective beta antagonist, enhanced H-PFC LTP while isoprenaline, a non-selective beta agonist, decreased H-PFC LTP. These results suggest that the BLA regulates H-PFC plasticity negatively and also provide a mechanism by which noradrenaline in the BLA can affect H-PFC plasticity via alpha-2 and beta adrenoceptors.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Clonidina/farmacologia , Idazoxano/farmacologia , Isoproterenol/farmacologia , Masculino , Norepinefrina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley
6.
J Biol Chem ; 290(19): 12048-57, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25767117

RESUMO

Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Animais , Biotinilação , Córtex Cerebral/metabolismo , Eletrofisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo
7.
J Biomed Sci ; 23: 34, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956435

RESUMO

BACKGROUND: Parkinson's disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX(-) floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages. METHODS: In this study, we attempted to utilize a Shh-free approach in deriving SOX1(-) FP cells from hESCs in vitro. Neuroectoderm conversion from hESCs was achieved with dual inhibition of the BMP4 (LDN193189) and TGF-ß signaling pathways (SB431542) for 24 h under defined culture conditions. RESULTS: Following a further 5 days of treatment with LDN193189 or LDN193189 + SB431542, SOX1(-) FP cells constituted 70-80 % of the entire cell population. Upon treatment with Shh and FGF8, the SOX1(-) FP cells were efficiently converted to functional Nurr1(+) and TH(+) dopaminergic cells (patterning), which constituted more than 98 % of the entire cell population. However, when the same growth factors were applied to SOX1(+) cells, only less than 4 % of the cells became Nurr1(+), indicating that patterning was effective only if SOX1 expression was down-regulated. After transplanting the Nurr1(+) and TH(+) cells into a hemiparkinsonian rat model, significant improvements were observed in amphetamine induced ipslateral rotations, apomorphine induced contra-lateral rotations and Rota rod motor tests over a duration of 8 weeks. CONCLUSIONS: Our findings thus provide a convenient approach to FP development and functional dopaminergic neuron derivation.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Células Alimentadoras/enzimologia , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição SOXB1 , Animais , Linhagem Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
8.
Stem Cells ; 32(6): 1636-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449409

RESUMO

Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.


Assuntos
Proteínas da Mielina/metabolismo , Células-Tronco Neurais/citologia , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Apolipoproteínas E/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Sobrevivência Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Embrião de Mamíferos/citologia , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Proteínas da Mielina/deficiência , Proteínas da Mielina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Comunicação Parácrina/efeitos dos fármacos , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Receptores de Superfície Celular/deficiência , Receptores Imunológicos/deficiência , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
9.
J Neurosci ; 33(1): 334-43, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283346

RESUMO

The aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death. To date, strategies to inhibit Cdk5 activity have not been successful in targeting selectively aberrant activity without affecting normal Cdk5 activity. Here we show that the selective inhibition of p25/Cdk5 hyperactivation in vivo, through overexpression of the Cdk5 inhibitory peptide (CIP), rescues against the neurodegenerative pathologies caused by p25/Cdk5 hyperactivation without affecting normal neurodevelopment afforded by normal p35/Cdk5 activity. Tau and amyloid pathologies as well as neuroinflammation are significantly reduced in the CIP-p25 tetra transgenic mice, whereas brain atrophy and subsequent cognitive decline are reversed in these mice. The findings reported here represent an important breakthrough in elucidating approaches to selectively inhibit the p25/Cdk5 hyperactivation as a potential therapeutic target to reduce neurodegeneration.


Assuntos
Encéfalo/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Degeneração Neural/genética , Neurônios/metabolismo , Animais , Apoptose/genética , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Fosforilação , Proteínas tau/metabolismo
10.
Geroscience ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539016

RESUMO

Lithium is an established first-line treatment for bipolar disorder. Beyond its therapeutic effect as a mood stabiliser, lithium exhibits potential anti-ageing effects. This study aimed to examine the relationship between the duration of lithium use, biological ageing and mortality. The UK Biobank is an observational study of middle-aged and older adults. We tested associations between the duration of lithium use (number of prescriptions, total duration of use and duration of the first prescription period) and telomere length, frailty, metabolomic age (MileAge) delta, pulse rate and all-cause mortality. Five hundred ninety-one individuals (mean age = 57.49 years; 55% females) had been prescribed lithium. There was no evidence that the number of prescriptions (ß = - 0.022, 95% CI - 0.081 to 0.037, p = 0.47), the total duration of use (ß = - 0.005, 95% CI - 0.023 to 0.013, p = 0.57) or the duration of the first prescription period (ß = - 0.018, 95% CI - 0.051 to 0.015, p = 0.29) correlated with telomere length. There was also no evidence that the duration of lithium use correlated with frailty or MileAge delta. However, a higher prescription count and a longer duration of use was associated with a lower pulse rate. The duration of lithium use did not predict all-cause mortality. We observed no evidence of associations between the duration of lithium use and biological ageing markers, including telomere length. Our findings suggest that the potential anti-ageing effects of lithium do not differ by the duration of use.

11.
PLoS One ; 19(4): e0299703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630707

RESUMO

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Assuntos
Clorometilcetonas de Aminoácidos , Disfunção Cognitiva , Substância Branca , Animais , Camundongos , Substância Branca/metabolismo , Encéfalo/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Sci Signal ; 17(823): eabl5880, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349968

RESUMO

The neuropeptide relaxin-3 is composed of an A chain and a B chain held together by disulfide bonds, and it modulates functions such as anxiety and food intake by binding to and activating its cognate receptor RXFP3, mainly through the B chain. Biased ligands of RXFP3 would help to determine the molecular mechanisms underlying the activation of G proteins and ß-arrestins downstream of RXFP3 that lead to such diverse functions. We showed that the i, i+4 stapled relaxin-3 B chains, 14s18 and d(1-7)14s18, were Gαi/o-biased agonists of RXFP3. These peptides did not induce recruitment of ß-arrestin1/2 to RXFP3 by GPCR kinases (GRKs), in contrast to relaxin-3, which enabled the GRK2/3-mediated recruitment of ß-arrestin1/2 to RXFP3. Relaxin-3 and the previously reported peptide 4 (an i, i+4 stapled relaxin-3 B chain) did not exhibit biased signaling. The staple linker of peptide 4 and parts of both the A chain and B chain of relaxin-3 interacted with extracellular loop 3 (ECL3) of RXFP3, moving it away from the binding pocket, suggesting that unbiased ligands promote a more open conformation of RXFP3. These findings highlight roles for the A chain and the N-terminal residues of the B chain of relaxin-3 in inducing conformational changes in RXFP3, which will help in designing selective biased ligands with improved therapeutic efficacy.


Assuntos
Relaxina , Relaxina/farmacologia , Relaxina/química , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Domínios Proteicos , beta-Arrestinas/metabolismo
13.
Hippocampus ; 23(7): 616-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23520012

RESUMO

A priming-challenge schedule of nicotine treatment causes long-lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)-dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta-adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC. Interactions between nicotine and clozapine are of interest because of the prevalence of smoking in patients with schizophrenia and increasing interest in the use of nicotinic receptor ligands as cognitive enhancers. Rats were subchronically primed with nicotine, clozapine or saline. Twenty-one to twenty-eight days later, the effects of the nicotine, clozapine or saline challenge on the evoked field excitatory postsynaptic potentials (fEPSP) at the MPP-DG monosynaptic pathway were recorded as a measure of LLP. We confirmed the hypothesis that a challenge dose of either nicotine or clozapine induces LLP exclusively in nicotine- and clozapine-primed rats, and not in saline-primed rats, thus indicating a cross-priming effect. Moreover, unilateral suppression of LC using lidocaine abolished the LLP induced by nicotine in clozapine-primed rats. Furthermore, systemic treatment with clonidine (an α2 adrenoceptor agonist that reduces NAergic activity via autoreceptors) prior to the challenge doses blocked the nicotine/clozapine-induced LLP in nicotine- and clozapine-primed rats. These findings may add to understanding of the cognitive enhancing effects of nicotine.


Assuntos
Clozapina/administração & dosagem , Hipocampo/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Animais , Antipsicóticos/administração & dosagem , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Locus Cerúleo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
14.
Eur J Neurosci ; 38(4): 2516-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23668693

RESUMO

The medial prefrontal cortex (mPFC) in the rat has been implicated in a variety of cognitive processes, including working memory and expression of fear memory. We investigated the inputs from a brain stem nucleus, the nucleus incertus (NI), to the prelimbic area of the mPFC. This nucleus strongly expresses corticotropin-releasing factor type 1 (CRF1 ) receptors and responds to stress. A retrograde tracer was used to verify connections from the NI to the mPFC. Retrogradely labelled cells in the NI expressed CRF receptors. Electrophysiological manipulation of the NI revealed that stimulation of the NI inhibited spontaneous neuronal firing in the mPFC. Similarly, CRF infusion into the NI, in order to mimic a stressful condition, inhibited neuronal firing and burst firing in the mPFC. The effect of concurrent high-frequency stimulation of the NI on plasticity in the hippocampo-prelimbic medial prefrontal cortical (HP-mPFC) pathway was studied. It was found that electrical stimulation of the NI impaired long-term potentiation in the HP-mPFC pathway. Furthermore, CRF infusion into the NI produced similar results. These findings might account for some of the extra-pituitary functions of CRF and indicate that the NI may play a role in stress-driven modulation of working memory and possibly other cognitive processes subserved by the mPFC.


Assuntos
Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração , Inibição Neural , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Hormônio Liberador da Corticotropina/administração & dosagem , Hipocampo/efeitos dos fármacos , Infusões Parenterais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Vias Neurais , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
PLoS One ; 18(11): e0294045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967073

RESUMO

The relaxin-3/RXFP3 system has been implicated in the modulation of depressive- and anxiety-like behaviour in the animal literature; however, there is a lack of human studies investigating this signalling system. We seek to bridge this gap by leveraging the large UK Biobank study to retrospectively assess genetic risk variants linked with this neuropeptidergic system. Specifically, we conducted a candidate gene study in the UK Biobank to test for potential associations between a set of functional, candidate single nucleotide polymorphisms (SNPs) pertinent to relaxin-3 signalling, determined using in silico tools, and several outcomes, including depression, atypical depression, anxiety and metabolic syndrome. For each outcome, we used several rigorously defined phenotypes, culminating in subsample sizes ranging from 85,881 to 386,769 participants. Across all outcomes, there were no associations between any candidate SNP and any outcome phenotype, following corrections for multiple testing burden. Regression models comprising several SNPs per relevant candidate gene as exploratory variables further exhibited no prediction of outcome. Our findings corroborate conclusions from previous literature about the limitations of candidate gene approaches, even when based on firm biological hypotheses, in the domain of genetic research for neuropsychiatric disorders.


Assuntos
Receptores Acoplados a Proteínas G , Relaxina , Animais , Humanos , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/genética , Relaxina/metabolismo , Estudos Retrospectivos , Transdução de Sinais
16.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765085

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used psychopharmaceutical treatment for major depressive disorder (MDD), but individual responses to SSRIs vary greatly. CYP2C19 is a key enzyme involved in the metabolism of several drugs, including SSRIs. Variations in the CYP2C19 gene are associated with differential metabolic activity, and thus differential SSRI exposure; accordingly, the CYP2C19 genotype may affect the therapeutic response and clinical outcomes, though existing evidence of this link is not entirely consistent. Therefore, we analysed data from the UK Biobank, a large, deeply phenotyped prospective study, to investigate the effects of CYP2C19 metaboliser phenotypes on several clinical outcomes derived from primary care records, including multiple measures of antidepressant switching, discontinuation, duration, and side effects. In this dataset, 24,729 individuals were prescribed citalopram, 3012 individuals were prescribed escitalopram, and 12,544 individuals were prescribed sertraline. Consistent with pharmacological expectations, CYP2C19 poor metabolisers on escitalopram were more likely to switch antidepressants, have side effects following first prescription, and be on escitalopram for a shorter duration compared to normal metabolisers. CYP2C19 poor and intermediate metabolisers on citalopram also exhibited increased odds of discontinuation and shorter durations relative to normal metabolisers. Generally, no associations were found between metabolic phenotypes and proxies of response to sertraline. Sensitivity analyses in a depression subgroup and metabolic activity scores corroborated results from the primary analysis. In summary, our findings suggest that CYP2C19 genotypes, and thus metabolic phenotypes, may have utility in determining clinical responses to SSRIs, particularly escitalopram and citalopram, though further investigation of such a relationship is warranted.

17.
Biomolecules ; 13(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36979460

RESUMO

Tumor necrosis factor-receptor 1 (TNF-R1)-mediated signaling is critical to the regulation of inflammatory responses. TNF-R1 can be proteolytically released into systemic blood circulation in a soluble form (sTNF-R1), where it binds to circulating TNF and functions to attenuate TNF-mediated inflammation. Increases of peripheral sTNF-R1 have been reported in both Alzheimer's disease (AD) dementia and vascular dementia (VaD). However, the status of sTNF-R1 in predementia subjects (cognitive impairment, no dementia, CIND) is unknown, and putative associations with cerebral small vessel disease (CSVD), as well as with longitudinal changes in cognitive functions are unclear. We measured baseline serum sTNF-R1 in a longitudinally assessed cohort of 93 controls and 103 CIND, along with neuropsychological evaluations and neuroimaging assessments. Serum sTNF-R1 levels were increased in CIND compared with controls (p < 0.001). Higher baseline sTNF-R1 levels were specifically associated with lacunar infarcts (rate ratio = 6.91, 95% CI 3.19-14.96, p < 0.001), as well as lower rates of cognitive decline in the CIND subgroup. Our data suggest that sTNF-R1 interacts with vascular cognitive impairment in a complex manner at predementia stages, with elevated levels associated with more severe CSVD at baseline, but which may subsequently be protective against cognitive decline.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
18.
J Biol Chem ; 286(25): 22186-94, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21525004

RESUMO

The prolongation of QT intervals in both mothers and fetuses during the later period of pregnancy implies that higher levels of progesterone may regulate the function of the human ether-a-go-go-related gene (HERG) potassium channel, a key ion channel responsible for controlling the length of QT intervals. Here, we studied the effect of progesterone on the expression, trafficking, and function of HERG channels and the underlying mechanism. Treatment with progesterone for 24 h decreased the abundance of the fully glycosylated form of the HERG channel in rat neonatal cardiac myocytes and HERG-HEK293 cells, a cell line stably expressing HERG channels. Progesterone also concentration-dependently decreased HERG current density, but had no effect on voltage-gated L-type Ca(2+) and K(+) channels. Immunofluorescence microscopy and Western blot analysis show that progesterone preferentially decreased HERG channel protein abundance in the plasma membrane, induced protein accumulation in the dilated endoplasmic reticulum (ER), and increased the protein expression of C/EBP homologous protein, a hallmark of ER stress. Application of 2-hydroxypropyl-ß-cyclodextrin (a sterol-binding agent) or overexpression of Rab9 rescued the progesterone-induced HERG trafficking defect and ER stress. Disruption of intracellular cholesterol homeostasis with simvastatin, imipramine, or exogenous application of cholesterol mimicked the effect of progesterone on HERG channel trafficking. Progesterone may impair HERG channel folding in the ER and/or block its trafficking to the Golgi complex by disrupting intracellular cholesterol homeostasis. Our findings may reveal a novel molecular mechanism to explain the QT prolongation and high risk of developing arrhythmias during late pregnancy.


Assuntos
Colesterol/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Homeostase/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Progesterona/farmacologia , Animais , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Canal de Potássio ERG1 , Condutividade Elétrica , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato , Temperatura
19.
Neurosci Biobehav Rev ; 135: 104560, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124156

RESUMO

Behavioral phenotyping has been gaining prominence due to the increased use of transgenic animal models of neurological disorders. Repeated testing in the same cohort of animals can reduce the overall number of animals used and is desired especially when animal numbers are difficult to obtain as well as for studies involving within-subject design such as drug treatments or aging. This review aims to provide researchers with a comprehensive overview of the carryover effects when subjecting the same set of animals to the same behavioral test. We have focused on three behavioral domains of testing: anxiety, cognition and depression. Based on a review of the literature and our own experiences as a neurobehavioral core facility, we have found that manipulating inter-test interval, environmental contextual cues and stimuli can mitigate the carryover effects to a large extent, although there are certain tests that still show strong residual effects. In addition, the effects of strain on carryover effects from repeated testing are also discussed in this review.


Assuntos
Comportamento Animal , Roedores , Envelhecimento , Animais , Ansiedade , Cognição , Humanos
20.
Neurosci Biobehav Rev ; 131: 429-450, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537263

RESUMO

The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.


Assuntos
Ansiedade , Depressão , Receptores Acoplados a Proteínas G/fisiologia , Relaxina/fisiologia , Animais , Humanos , Ratos , Receptores de Peptídeos , Relaxina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA