Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Opt Express ; 30(26): 46811-46821, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558623

RESUMO

We demonstrate the use of deep ultraviolet (DUV) micro-light-emitting diodes (LEDs) for long-distance line-of-sight optical wireless communications. With a single 285 nm-emitting micro-LED, we have respectively achieved data rates greater than 6.5 Gb/s at a distance of 10 m and 4 Gb/s at 60 m. Moreover, we obtained >1 Gb/s data rates at a distance of 116 m. To our knowledge, these results are the highest data rates at such distances thus far reported using DUV micro-LEDs and the first demonstration of Gb/s communication at >100 m using any micro-LED-based transmitter.

2.
Opt Express ; 29(7): 10749-10768, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820203

RESUMO

Small satellites have challenging size weight and power requirements for communications modules, which we address here by using chip-scale light-emitting diode (LED) transmitters and single-photon avalanche diode receivers. Data rates of 100 Mb/s have been demonstrated at a sensitivity of -55.2 dBm, and simulations with supporting experimental work indicate ranges in excess of 1 km are feasible with a directional gain of up to 52 dBi and comparatively modest pointing requirements. A 750 m, 20 Mb/s link using a single micro-LED has been demonstrated experimentally. The low electrical power requirements and compact, semiconductor nature of these devices offer high data rate, high sensitivity communications for small satellite platforms.

3.
Opt Express ; 29(2): 1502-1515, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726364

RESUMO

Three dimensional reconstruction of objects using a top-down illumination photometric stereo imaging setup and a hand-held mobile phone device is demonstrated. By employing binary encoded modulation of white light-emitting diodes for scene illumination, this method is compatible with standard lighting infrastructure and can be operated without the need for temporal synchronization of the light sources and camera. The three dimensional reconstruction is robust to unmodulated background light. An error of 2.69 mm is reported for an object imaged at a distance of 42 cm and with the dimensions of 48 mm. We also demonstrate the three dimensional reconstruction of a moving object with an effective off-line reconstruction rate of 25 fps.

4.
Opt Express ; 29(18): 29095-29106, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34615026

RESUMO

We demonstrate a dual-material integrated photonic thermometer, fabricated by high accuracy micro-transfer printing. A freestanding diamond micro-disk resonator is printed in close proximity to a gallium nitride on a sapphire racetrack resonator, and respective loaded Q factors of 9.1 × 104 and 2.9 × 104 are measured. We show that by using two independent wide-bandgap materials, tracking the thermally induced shifts in multiple resonances, and using optimized curve fitting tools the measurement error can be reduced to 9.2 mK. Finally, for the GaN, in a continuous acquisition measurement we record an improvement in minimum Allan variance, occurring at an averaging time four times greater than a comparative silicon device, indicating better performance over longer time scales.

5.
Opt Lett ; 46(15): 3612-3615, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329237

RESUMO

Time of flight and photometric stereo are two three-dimensional (3D) imaging techniques with complementary properties, where the former can achieve depth accuracy in discontinuous scenes, and the latter can reconstruct surfaces of objects with fine depth details and high spatial resolution. In this work, we demonstrate the surface reconstruction of complex 3D fields with discontinuity between objects by combining the two imaging methods. Using commercial LEDs, a single-photon avalanche diode camera, and a mobile phone device, high resolution of surface reconstruction is achieved with a RMS error of 6% for an object auto-selected from a scene imaged at a distance of 50 cm.

6.
Nano Lett ; 20(3): 1862-1868, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017573

RESUMO

Semiconductor nanowire (NW) lasers are a promising technology for the realization of coherent optical sources with ultrasmall footprint. To fully realize their potential in on-chip photonic systems, scalable methods are required for dealing with large populations of inhomogeneous devices that are typically randomly distributed on host substrates. In this work two complementary, high-throughput techniques are combined: the characterization of nanowire laser populations using automated optical microscopy, and a high-accuracy transfer-printing process with automatic device spatial registration and transfer. Here, a population of NW lasers is characterized, binned by threshold energy density, and subsequently printed in arrays onto a secondary substrate. Statistical analysis of the transferred and control devices shows that the transfer process does not incur measurable laser damage, and the threshold binning can be maintained. Analysis on the threshold and mode spectra of the device populations proves the potential for using NW lasers for integrated systems fabrication.

7.
Acc Chem Res ; 52(6): 1665-1674, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117341

RESUMO

One of the most desirable and advantageous attributes of organic materials chemistry is the ability to tune the molecular structure to achieve targeted physical properties. This can be performed to achieve specific values for the ionization potential or electron affinity of the material, the absorption and emission characteristics, charge transport properties, phase behavior, solubility, processability, and many other properties, which in turn can help push the limits of performance in organic semiconductor devices. A striking example is the ability to make subtle structural changes to a conjugated macromolecule to vary the absorption and emission properties of a generic chemical structure. In this Account, we demonstrate that target properties for specific photonic applications can be achieved from different types of semiconductor structures, namely, monodisperse star-shaped molecules, complex linear macromolecules, and conjugated polymers. The most appropriate material for any single application inevitably demands consideration of a trade-off of various properties; in this Account, we focus on applications such as organic lasers, electrogenerated chemiluminescence, hybrid light emitting diodes, and visible light communications. In terms of synthesis, atom and step economies are also important. The star-shaped structures consist of a core unit with 3 or 4 functional connection points, to which can be attached conjugated oligomers of varying length and composition. This strategy follows a convergent synthetic pathway and allows the isolation of target macromolecules in good yield, high purity, and absolute reproducibility. It is a versatile approach, providing a wide choice of constituent molecular units and therefore varying properties, while the products share many of the desirable attributes of polymers. Constructing linear conjugated macromolecules with multifunctionality can lead to complex synthetic routes and lower atom and step economies, inferior processability, and lower thermal or chemical stability, but these materials can be designed to provide a range of different targeted physical properties. Conventional conjugated polymers, as the third type of structure, often feature so-called "champion" properties. The synthetic challenge is mainly concerned with monomer synthesis, but the final polymerization sequence can be hard to control, leading to variable molecular weights and polydispersities and some degree of inconsistency in the properties of the same material between different synthetic batches. If a champion characteristic persists between samples, then the variation of other properties between batches can be tolerable, depending on the target application. In the case of polymers, we have chosen to study PPV-type polymers with bulky side groups that provide protection of their conjugated backbone from π-π stacking interactions. These polymers exhibit high photoluminescence quantum yields (PLQYs) in films and short radiative lifetimes and are an important benchmark to monodisperse star-shaped systems in terms of different absorption/emission regions. This Account therefore outlines the advantages and special features of monodisperse star-shaped macromolecules for photonic applications but also considers the two alternative classes of materials and highlights the pros and cons of each class of conjugated structure.

8.
Opt Lett ; 45(4): 881-884, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058495

RESUMO

The transfer printing of aluminum gallium arsenide (AlGaAs) microdisk resonators onto a silicon-on-insulator (SOI) waveguide platform is demonstrated. The integrated resonators exhibit loaded ${Q}$Q-factors reaching $ 4 \times {10^4} $4×104, and the vertical assembly approach allows selective coupling to different spatial mode families. The hybrid platform's nonlinearity is characterized by four-wave mixing with a measured nonlinear coefficient of $ \gamma = 325\;{({\rm Wm})^{ - 1}} $γ=325(Wm)-1, with the devices demonstrating minimal two-photon absorption and free-carrier absorption losses that are inherent to SOI at telecommunications wavelengths.

9.
Opt Express ; 27(11): 15585-15594, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163753

RESUMO

Solid-state camera systems are now widely available in portable consumer electronics, providing potential receivers for visible light communications in every device. Typically, data rates with camera receivers are limited by the 60 fps frame rate of both the image sensor and projector systems. Recent developments in high-frame rate microdisplays and slow-motion cameras for smartphones now permit high-speed, spatially structured signals to be transmitted and captured. Here, we present a method for transmitting data to a smartphone using a CMOS-controlled micro-LED projector system. Spatial patterns are projected onto a wall at a refresh rate of 480 Hz, which can be captured by the smartphone's 960 fps camera. Data transfer is performed over meter scale distances, and the use of an alignment frame gives the system a level of tolerance to motion and misalignment. The current system allows data transmission at a peak rate of 122.88 kb/s using a 16 × 16 micro-LED array, which can be readily scaled to Mb/s rates with a higher resolution transmitter.

10.
Opt Express ; 27(24): 35485-35498, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878719

RESUMO

Multispectral and 3-D imaging are useful for a wide variety of applications, adding valuable spectral and depth information for image analysis. Single-photon avalanche diode (SPAD) based imaging systems provide photon time-of-arrival information, and can be used for imaging with time-correlated single photon counting techniques. Here we demonstrate an LED based synchronised illumination system, where temporally structured light can be used to relate time-of-arrival to specific wavelengths, thus recovering reflectance information. Cross-correlation of the received multi-peak histogram with a reference measurement yields a time delay, allowing depth information to be determined with cm-scale resolution despite the long sequence of relatively wide (∼10 ns) pulses. Using commercial LEDs and a SPAD imaging array, multispectral 3-D imaging is demonstrated across 9 visible wavelength bands.

11.
Nano Lett ; 18(6): 3414-3420, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29781625

RESUMO

Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

12.
Opt Express ; 26(13): 16679-16688, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119492

RESUMO

A transfer printing (TP) method is presented for the micro-assembly of integrated photonic devices from suspended membrane components. Ultra thin membranes with thickness of 150nm are directly printed without the use of mechanical support and adhesion layers. By using a correlation alignment scheme vertical integration of single-mode silicon waveguides is achieved with an average placement accuracy of 100±70nm. Silicon (Si) µ-ring resonators are also fabricated and show controllable optical coupling by varying the lateral absolute position to an underlying Si bus waveguide.

13.
Nano Lett ; 17(10): 5990-5994, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28873314

RESUMO

Nanowire lasers are integrated with planar waveguide devices using a high positional accuracy microtransfer printing technique. Direct nanowire to waveguide coupling is demonstrated, with coupling losses as low as -17 dB, dominated by mode mismatch between the structures. Coupling is achieved using both end-fire coupling into a waveguide facet, and from nanowire lasers printed directly onto the top surface of the waveguide. In-waveguide peak powers up to 11.8 µW are demonstrated. Basic photonic integrated circuit functions such as power splitting and wavelength multiplexing are presented. Finally, devices are fabricated on a mechanically flexible substrate to demonstrate robust coupling between the on-chip laser source and waveguides under significant deformation of the system.

14.
Opt Express ; 25(8): A338-A345, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437920

RESUMO

We report a CMOS integrated micro-LED array capable of generating discrete optical output power levels. A 16 × 16 array of individually addressable pixels are on-off controlled through parallel logic signals. With carefully selected groups of LEDs driven together, signals suitable for discrete transmission schemes are produced. The linearity of the device is assessed, and data transmission using pulse amplitude modulation (PAM) and orthogonal frequency division multiplexing (OFDM) is performed. Error-free transmission at a symbol rate of 100 MSamples/s is demonstrated with 4-PAM, yielding a data rate of 200 Mb/s. For 8-PAM, encoding is required to overcome the baseline wander from the receiver, reducing the data rate to 150 Mb/s. We also present an experimental proof-of-concept demonstration of discrete-level OFDM, achieving a spectral efficiency of 3.96 bits/s/Hz.

15.
Opt Express ; 24(1): 699-707, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832299

RESUMO

Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

16.
Opt Lett ; 40(6): 930-3, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768149

RESUMO

A monolithic diamond Raman laser is reported. It utilizes a 13-mm radius of curvature lens etched onto the diamond surface and dielectric mirror coatings to form a stable resonator. The performance is compared to that of a monolithic diamond Raman laser operating in a plane-plane cavity. On pumping with a compact Q-switched laser at 532 nm (16 µJ pulse energy; 1.5 ns pulse duration; 10 kHz repetition-rate; M2<1.5), laser action was observed at the first, second, and third Stokes wavelengths (573 nm, 620 nm and 676 nm, respectively) in both cases. For the microlens cavity, a conversion efficiency of 84% was achieved from the pump to the total Raman output power, with a slope efficiency of 88%. This compares to a conversion efficiency of 59% and a slope efficiency of 74% for the plane-plane case. Total Raman output powers of 134 and 96 mW were achieved for the microlens and plane-plane cavities, respectively.

17.
Opt Express ; 22(2): 1372-80, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515144

RESUMO

A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.


Assuntos
Separação Celular/instrumentação , Células Dendríticas/citologia , Células Dendríticas/fisiologia , Microscopia de Fluorescência/instrumentação , Pinças Ópticas , Linfócitos T/citologia , Linfócitos T/fisiologia , Animais , Células Cultivadas , Eletrônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Micromanipulação/instrumentação
18.
Biomed Opt Express ; 15(5): 3200-3215, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855662

RESUMO

The therapeutic application of blue light (380 - 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420-483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402-413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420-425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications.

19.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562871

RESUMO

Optogenetics allows manipulation of neural circuits in vivo with high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models). Here, we have developed, optimised, and tested in vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181 µLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies. Thinning the combined µLED and needle backplane of the device from 300 µm to 230 µm improved the efficiency of light delivery to tissue by 80%, allowing lower µLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1°C. The device was tested in vivo in the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons. It was shown that the strongest optogenetic response occurred in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling - demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential (LFP) activity.

20.
Commun Biol ; 7(1): 329, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485764

RESUMO

Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.


Assuntos
Neurônios , Optogenética , Animais , Eletrodos , Neurônios/fisiologia , Primatas/fisiologia , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA